论文部分内容阅读
光纤损耗和色散是光纤通信向前发展的主要限制因素,随着光放大器和各种色散补偿技术的采用,这两种因素的影响得以减小或克服,在这种情况下,光纤的偏振模色散(PMD)的影响显得尤为突出,成为限制高速率、长距离光纤传输的一个重要因素。特别是当光纤通信系统单信道传输速率达到40Gbit/s或以上时,二阶PMD效应已不可忽略,它严重影响了信号传输质量,造成数字通信的码间干扰。由于PMD在传输过程中易受外界环境影响而呈统计特性,它的补偿相对色散补偿比较复杂,因此PMD被认为是影响光纤传输系统性能的最终因素。 本论文在前人研究的基础上,对单模光纤中的PMD进行了具体研究,改进、验证和发展了己有理论。本文首先对描述偏振模色散的有关概念及其特性等进行了总结,为以后各章的讨论提供了理论基础。然后从偏振主态的概念出发,推导了一阶偏振模色散引起的脉冲展宽的均方值表达式,描述了PMD对信号的展宽作用。随后研究了PMD引起的脉冲展宽对接收机灵敏度的恶化以及对接收信号频谱的影响。在此基础上,提出了以接收信号频谱中某频率分量的功率作为PMD自动补偿系统的反馈控制信号的方法。 偏振模色散的补偿技术是本文研究的重点。文中首先描述了一阶PMD补偿的基本原理,给出了PMD补偿系统的一般模型,对各个模块和关键技术进行较为详细的讨论,对现有的PMD补偿技术进行了总结和比较。文中还对二阶PMD,WDM系统与光孤子系统中的PMD及其补偿问题进行了分析与讨论。然后,为了对高速光通信系统中偏振模色散(PMD)进行补偿,构建了一个较完整的光通信系统的仿真模型。改进了原有的基于最小均方误差(MSE)算法控制的平面光波导(PLC)均衡器。对比了经过补偿和未经补偿两种情况下的系统性能,并研究分析了不同阶数PLC光均衡器的补偿效果。另外,推导改进了描述脉冲展宽程度的展宽因子公式,最后证明,结果表明PLC均衡器可以较好地克服PMD的影响,有效的减小了光脉冲的展宽,降低了误码率。