论文部分内容阅读
混沌是非线性科学研究的主要内容之一,是21世纪的非线性科学研究人员面临的重要课题。混沌的各种动力学行为在自然科学等许多领域已有了广泛而深入的研究。混沌同步是混沌系统研究的主要动力学行为。目前,混沌系统同步主要分为完全同步、相同步、投影同步、延迟同步、函数同步、广义同步等。其中,混沌广义同步最为复杂和神秘,其理论研究成果相对较少。1995年,Nikolai. F.Rulkov首次发现和描述混沌广义同步现象,很快引起了众多学者的极大兴趣,成为热点研究课题。同时广义同步现象及其控制方法也出现在保密通信,信息加密,生物工程等相关专业方向。因此,广义同步的研究具有重大的理论意义和应用价值。本文主要讨论了混沌广义同步及控制问题。绪论中简述了混沌的基础知识和文中涉及方法的基本原理。主要研究混沌系统的广义同步问题,内容包括脉冲控制的双向耦合混沌广义同步、给定流形的广义同步、自适应广义同步。最后,对全文作总结,并且对以后的研究方向作了展望。具体的研究内容如下:1、提出了双向耦合的脉冲控制的混沌系统,采用辅助系统的方法,得到了该系统实现广义同步时所需满足的充分条件。以混沌和超混沌进行了的数值仿真,仿真结果表明了该理论是有效的。2、关于广义同步流形的研究,一般都假定广义同步流形是线性的或是非线性的,没有将各种形式的广义同步流形加以统一考虑,所以,该部分提出了新的耦合混沌系统,其广义同步流形更具有一般性。并且得到了实现广义同步时的充分条件,数值仿真进一步验证了理论结果的正确性。3、基于Lyapunov稳定性理论,讨论了两类给定流形的双向耦合的自适应广义同步问题,理论上给出了达到广义同步的充分而非保守条件。同时,应用广义同步原理,使信息信号遮掩于给定流形的混沌系统进行传输,由于预先给定的流形是可以改变的,从而使相应的混沌动力学行为呈现多态化,增强了通信的保密性。