【摘 要】
:
2014年,研究人员利用高压合成技术制备出了层状超导材料AP2-xXx(A=Zr,Hf;X=S,Se),这类材料与铁基超导体111体系类似,都具有PbFCl型晶体结构,空间群为P4/nmm。随着掺杂含量的增加,Tc相图呈现出与铁基超导体类似的“圆顶”形状,表明该体系中可能存在非常规超导电性。此外,2015年,研究人员在铁基超导体122体系(ThCr2Si2结构)中发现了一类新型的超导材料(La0.
【基金项目】
:
国家重点研发计划(2018YFA0704300); 国家自然科学基金面上项目(11674054);
论文部分内容阅读
2014年,研究人员利用高压合成技术制备出了层状超导材料AP2-xXx(A=Zr,Hf;X=S,Se),这类材料与铁基超导体111体系类似,都具有PbFCl型晶体结构,空间群为P4/nmm。随着掺杂含量的增加,Tc相图呈现出与铁基超导体类似的“圆顶”形状,表明该体系中可能存在非常规超导电性。此外,2015年,研究人员在铁基超导体122体系(ThCr2Si2结构)中发现了一类新型的超导材料(La0.5-xNa0.5+x)Fe2As2,该化合物与122体系中其他化合物类似,在低温下发生顺磁到反铁磁转变,同时伴随着从四方相到正交相的结构转变。在(La0.5-xNa0.5+x)Fe2As2中,可以通过改变La/Na的比值来研究电子和空穴的不对称性,为理解铁基超导体的非常规超导电性提供了新的研究平台。本论文中,我们主要对PbFCl型ZrP2-xSex和ThCr2Si2型(La0.5-xNa0.5+x)(Fe1-yCoy)2As2的单晶样品制备及其物理性质进行了研究。本论文内容具体安排如下:第一章,绪论部分简单介绍了超导电性的发现和发展史,并着重介绍了PbFCl型和ThCr2Si2型超导材料的研究进展。第二章,介绍了样品的生长方法、测试表征方法主要包括电、磁、比热和高压等测量手段。第三章,我们首次利用化学气相传输法生长出了毫米量级的ZrP1.49Se0.51单晶样品(超导转变温度Tc为6.8 K),并对其本征物性进行了系统的研究。研究结果表明其上临界场μ0Hc2(T)不能用传统的基于轨道拆对效应的WHH模型描述,同时,类似于多带铁基超导体,上临界场各向异性(38)表现出非单调的温度依赖关系。最后,下临界场和比热的结果表明,ZrP1.49Se0.51是一种基于电子-声子耦合机制的第二类BCS超导体。第四章,我们采用自助熔剂法成功生长出了La0.4Na0.6Fe2As2单晶样品,并对其进行了Co元素化学掺杂和金刚石对顶砧高压物性研究。X射线衍射(XRD)和X射线能谱仪(EDS)测量结果表明Co元素成功的掺杂到Fe位。通过电输运测量,我们发现随着Co元素掺杂含量或者施加压力的提高,La0.4Na0.6Fe2As2中的反铁磁转变逐渐被抑制,但并没有出现本征的体超导电性,这与铁基超导体中反铁磁转变消失后通常表现出的体超导电性行为非常不符。此外,霍尔效应表明,Co掺杂引入了额外的电子,使得载流子由空穴型占主导变为电子型占主导。最后,对本论文内容进行总结与展望。
其他文献
由于编织工艺的复杂性和生产过程的差异性,导致复合材料具有诸多不确定性。为得到准确的复合材料结构动力学模型,需要全面考虑复合材料结构参数的非均匀性和随机性。因此,研究复合材料不确定性参数识别方法,已经成为现代工程科学的内在要求。本文针对复合材料不确定性参数识别方法,主要开展了三方面的研究工作:首先,针对复合材料不确定性弹性参数场描述方法开展研究。基于K-L级数对复合材料弹性参数场进行展开,提出一种基
在人们的日常生活中,细菌几乎充满每个角落,其中一些致病的细菌会威胁人们身体的健康。因此,实现材料的抗菌功能化有非常重大的意义。通过材料的表面处理可以实现材料的抗菌化,这成为现在抗菌材料研究的主要方向。本文以6063铝合金作为研究的对象,首先运用阳极氧化工艺再合金表面制备了多孔膜,然后以硫酸阳极氧化膜作为交流电沉积Ag的模板,成功制备了抗菌功能膜。综合运用各种测试手段,系统地研究了电解液类型、氧化电
目前白光LED器件普遍采用蓝光GaN芯片激发黄色荧光粉制备而成,器件显色指数不高。为提高显色指数可将多种颜色荧光粉混合后制备白光LED,但这种荧光粉混合物普遍存在相位分离、色度偏移等缺点。利用紫外LED激发单组分的白色荧光粉是解决上述问题有效办法之一,而制备高荧光量子效率的白色荧光粉就成为该法的关键。铅基卤化物钙钛矿材料具有独特的缺陷容忍性以及荧光波长可调、荧光量子效率高等优点有望用于高荧光量子效
纳米孔主要分为固态纳米孔和生物纳米孔。固态纳米孔的成本相对较低,并且其机械性能更加优异,因此它在纳流体器件设计上与离子输运的分子动力学模拟上更具优势。本文重点分析研究了氯化镧溶液里的离子输运反应过程,以MD模拟仿真的模式,分析研究了影响氯化镧溶液在纳米孔里输运的主要因素。主要研究内容和结论如下所示:氯化镧溶液浓度对溶液离子电流的影响。对于部分单价和二价离子,离子电流一般随着溶液浓度的增加而增加,并
全无机卤化物钙钛矿由于荧光量子产率高、荧光发射峰窄、发射波长可覆盖整个可见光区等优异光学性质,成为光电功能材料领域热点材料之一。掺杂是调控纳米晶光电性质的重要办法。以二维卤化物钙钛矿为宿主材料进行掺杂,由于二维钙钛矿较强的激子结合能以及较弱的电磁屏蔽作用将有助于增强宿主-杂质间相互作用,从而展示出与掺杂三维钙钛矿不同的光电性质。鉴于掺杂卤化物钙钛矿大多采用三维纳米晶宿主的研究现状,本论文将致力于二
光场的操纵一直是光学领域内重要的研究目标。在传统光学中,利用光波在介质中传播时所累积的相位可以实现对光场偏振态、相位等特性的操纵。然而,自然界中已有材料的折射率有限,且利用光波在已有材料中的传播光程变化实现光学调控的光学系统大多质量体积庞大。在此基础上,科研人员提出了一种新的基于光学超表面调控光场的方法。光学超表面是亚波长散射体的二维阵列,可以用于修改光的不同特性(相位、偏振、强度等)。亚波长散射
卷曲二维材料得到的一维纳米结构不仅能继承二维材料的优异性质,还会表现出专属于一维纳米结构的本征物理或化学性质。碳纳米卷和二硫化钼纳米卷已经作为优异的一维纳米材料获得了广泛的研究。基于此,本文以磷烯为研究对象,通过第一性原理计算系统研究了不同大小、层数和手性的磷烯纳米卷的稳定性和电子结构等性质。主要结论阐释如下:(1)黑磷纳米卷的稳定性和电子结构。黑磷是继石墨烯和二硫化钼之后又一个引起研究者们广泛关
超黑材料一般指光反射率小于1%,吸收率大于99%的材料。由于能够捕获几乎所有的入射光,超黑材料在航空航天、军事和能源等领域获得广泛应用。现有的超黑材料主要包括具有低折射率的碳基材料及具有特殊表面结构的镍磷合金、黑金和黑硅等材料。但大多数材料的制备方法复杂,成本高昂,且仅能在相对较窄的波段范围内表现出超黑的特性。鉴于此,本课题尝试采用简单易行的动态氢气泡模板(DHBT)法开发具有宽波段超黑性能的新金
非线性光学的发展很大程度上得益于新型光学材料的出现和应用。近年来,非线性光学材料发展非常迅速,除了常规的体材料以外,微纳结构材料的发现使得非线性光学材料的范围拓展到了纳米尺寸,在这其中核壳纳米材料为非线性光学的发展带来了新的契机。一般情况下由于核壳纳米粒子具有优于单一金属纳米粒子的性能,因此在电子、光学、催化和微电子学等领域得到了广泛的应用。而在非线性光学领域,核壳结构粒子因其比单组分的纳米粒子具
自2004年石墨烯发现以来,二维材料获得了研究人员的广泛关注,逐渐成为物理、化学、材料等多个学科共同关注的重要领域。由于二维材料具有独特的原子量级厚度的结构特点,并表现出了优异的光电、机械和热学性能,因此在不同领域特别是高性能纳米器件开发上有着重要的应用价值。例如,石墨烯的室温电子迁移率约为104 cm2V-1s-1,能够制造快速运作的晶体管。二硫化钼从块材到单层,电子结构发生改变,间接带隙变成直