【摘 要】
:
飞秒激光脉冲具有脉冲宽度窄、峰值功率高、相干光谱宽的特点,在高端工业制造、微纳加工和科学研究中扮演着重要的角色。新技术层出不穷促进了飞秒激光技术的不断发展。目前基于单路飞秒激光放大或非线性压缩技术所获得的超短脉冲指标已经接近极限,为了获得更高的单脉冲能量或更窄的脉冲宽度,相干合成技术成为了一个新的发展方向。同时,高端加工等应用对飞秒激光的柔性传输需求也日渐凸显,近些年来出现的新型空芯光纤为高能量脉
论文部分内容阅读
飞秒激光脉冲具有脉冲宽度窄、峰值功率高、相干光谱宽的特点,在高端工业制造、微纳加工和科学研究中扮演着重要的角色。新技术层出不穷促进了飞秒激光技术的不断发展。目前基于单路飞秒激光放大或非线性压缩技术所获得的超短脉冲指标已经接近极限,为了获得更高的单脉冲能量或更窄的脉冲宽度,相干合成技术成为了一个新的发展方向。同时,高端加工等应用对飞秒激光的柔性传输需求也日渐凸显,近些年来出现的新型空芯光纤为高能量脉冲传输提供了一个很好的解决方案。本文针对飞秒激光脉冲的相干脉冲合成展开了系统的研究,不但通过相干脉冲合成获得高能量脉冲,也利用相干脉冲合成的方法实现了少周期激光脉冲输出。为了满足反谐振光纤传输飞秒激光脉冲的单模要求,设计了一种具有优良单模传输特性的空芯反谐振光纤。本论文的主要工作概括如下:一、系统研究了分割脉冲放大技术,提出了一种解决合成效率下降问题的方法。研究中基于数值方法,分析了双折射晶体、脉冲啁啾、分割脉冲能量偏差和非线性偏振旋转等因素对分割脉冲放大合成效率的影响。实验中搭建了掺镱非保偏大模场光纤分割脉冲放大系统,验证了模拟分析结果。为了提升分割脉冲放大系统的输出能量,设计并搭建了具有脉冲再合成光路的保偏光纤分割脉冲放大系统,克服了合成效率下降问题,为窄脉冲分割脉冲放大技术提供了一个提高合成效率的新思路。系统最终输出了脉冲宽度123 fs的合成脉冲。二、系统研究了基于掺镱光纤激光器和高非线性光纤的相干脉冲合成,实现了少周期脉冲输出。在研究中分析了影响脉冲合成结果的多种因素。首先利用数值模拟研究了非线性光纤中脉冲相对强度噪声和时间抖动之间的关系。其次用解析方法研究了父脉冲时域宽度和形状、中心波长、脉冲能量、啁啾等参数对合成脉冲宽度和质量的影响,发现了获得高质量相干合成脉冲的条件,找到了优化方法。通过保证父脉冲具有相近的脉冲宽度和脉冲能量,同时减小父脉冲时域宽度可以有效地减小合成脉冲基底,提高时域质量。基于以上理论研究,在实验中将掺镱光纤飞秒激光器输出脉冲分束后分别在不同高非线性光子晶体光纤中进行光谱展宽,输出了两个脉冲宽度小于30 fs,具有不同中心波长的脉冲,经过相干脉冲合成,获得了合成后脉冲宽度为8 fs的少周期脉冲。三、利用有限元分析的方法研究了单层和双层反谐振光纤单模传输特性,并设计了多种具有良好单模传输特性的光纤结构。研究中发展了一种抑制反谐振光纤中高阶模的方法,优化包层管的几何尺寸可以使纤芯高阶模式和包层管模式发生高效耦合并形成高损耗超模,最终有效抑制高阶模。基于以上原理,设计了具有混合包层管的单层负曲率反谐振光纤,该结构可以同时实现对前两个高阶模的抑制。在对于双层结构研究中发现,在双层结构中形成高损耗超模需要级联耦合,并设计了双层五管反谐振光纤来实现高阶模式的级联耦合。设计了延长包层管双层负曲率反谐振光纤,该光纤结构对LP11和LP21模具有105到106级的高阶模抑制比,对LP02模具有105级的高阶模抑制比。在宽光谱范围内都有良好的单模特性,基模损耗低至3.90×10-4 d B/m。
其他文献
随着压缩感知模型和低秩矩阵模型在计算机视觉和机器学习等领域的广泛应用,低秩张量模型也得到了越来越多学者的关注。目前求解低秩张量模型常用的做法是把模型中的秩函数替换为张量核范数,由此原模型就转变为凸松弛模型。然而在很多情况下凸松弛模型与原模型之间存在很大差异,其计算结果在实际应用中难以达到精度要求。因此研究者们开始研究原模型的非凸松弛模型。但就目前研究来看,非凸松弛模型中的非凸函数会使其相关理论变得
由于单模光纤通信系统容量正逐渐逼近非线性香农极限,基于少模光纤的模分复用技术在最近几年得到深入的研究和发展。少模光放大器是模分复用技术落地的关键环节。本论文以少模掺铒光纤放大器、少模光纤拉曼放大器的理论模型为基础,研制增益均衡的少模光纤放大器。本论文的工作主要包含以下几个方面:1.为简化泵浦结构复杂性,消除简并泵浦模式角度依赖,通过设计两层铒离子掺杂结构的光纤,采用基模纤芯泵浦的方法,实现了C波段
随着数码相机、智能手机等数码设备的普及,用户可以随时随地拍摄各种感兴趣的场景。然而,在图像采集、传输、存储的过程中,存在多种因素导致图像质量降低,低质图像除了降低用户的视觉体验,也会影响后续的视觉算法的效果。因此,对这些低质量图像的增强将有助于人们更好的理解图像内容。图像增强可以作为图像分割、图像识别、纹理替换以及虚拟场景和真实场景之间的相似度评价等研究的前序处理。增强算法不仅需要提升图像的清晰度
太赫兹波在光谱检测与医学成像等领域具有重要应用价值。小型化高重频太赫兹源能够缩减仪器设备的体积和成本,方便操作,且具有高平均功率及高采样速率等优势,是目前太赫兹源研究的重要方向之一。非线性光学差频技术具有成本低、装置简单、调谐范围宽、无阈值和室温运转等特点,是实现小型化高重频太赫兹源的重要途径。本文围绕这一课题开展研究工作,主要工作内容和创新点如下:1、基于端面泵浦的内腔光学参量振荡器,以Nd:Y
低温烧结银焊膏,具有较高的熔点、热导率、电导率和可靠性,可以应用于耐高温芯片互连。镍作为一种在基板、底板以及印刷电路板等表面常见的金属镀层,镀层成本低,具有良好的耐腐蚀性。但是目前还没有关于烧结银在镍表面获得较高连接强度的报道,其原因是镍在烧结过程中容易氧化,镍的氧化物会阻碍银-镍界面金属键的形成,并且银-镍在固态下几乎完全不溶,银-镍相互扩散速率较低,形成较高强度的烧结银-镍互连接头比较困难。如
超宽带窄线宽线性调频连续光的产生与处理是高分辨力激光雷达系统中的核心技术。本论文针对能够用于长相干探测距离、高分辨力应用场景下的线性调频光信号的产生与处理进行了研究。基于单边带频率调制、循环移频、相干检测等微波光子学方法,创新性的使用循环扫频机制成功产生了频率调谐范围达到200GHz且瞬时线宽小于50k Hz的严格线性调频连续光信号并对其进行了测量分析。本论文对整个方案的所有模块技术,包括光信号线
随着微波光子学的发展,在激光腔外通过射频调制光载波频率,为实现光信号频率的精确控制提供了新的思路。腔外调制将种子光源与频率调制部分彼此分离,不改变种子光激光腔的结构,保证了种子光输出线宽、波长、功率等参数的稳定性,且方便更换种子光源进行系统升级;使用成熟稳定的射频信号调制光载波,保证了光源频率调谐的精确性和稳定性。本文研究了基于双平行马赫曾德调制器(Dual-parallel Mach-Zehnd
目前,国内外研究者都在致力于加速太赫兹的实用化进程,这离不开高性能的太赫兹功能器件的支撑。超材料为发展太赫兹功能器件提供了有效手段。与光波段和红外波段相比,太赫兹波段高性能的功能器件,特别是可调谐的、高效率的太赫兹功能器件很匮乏。本论文主要研究基于超表面的动态调控及高效波前调控太赫兹功能器件,具体内容如下:(1)我们自主搭建了全光纤太赫兹时域光谱仪,包括单模和保偏两种版本。此外我们还发展了基于光电
随着柔性电子行业的快速发展,其相关制造技术也得到了广泛关注。确定性微转印是柔性电子制造的关键环节,因此开展确定性微转印技术研究对促进柔性电子行业的发展具有重要的理论和应用价值。本研究以提高微转印操作效率和成功率为目的,针对确定性微转印机理与关键技术进行了系统研究,取得如下成果:为提高微转印效率,研究了微转印中工艺参数对微转印印章性能的影响。将微转印过程等效成“三明治”模型的界面竞争分层过程,综合考
太赫兹(THz)波是电磁波谱中尚未完全认知和开发的最后一个频段,具有重要学术意义和应用价值。太赫兹时域光谱(THz-TDS)技术已被证明在研究生物物理特性及结构功能等方面具有突出优势,在获取物质特征集体振动模式信息和分子间相互作用信息的同时,不断向生物传感领域延伸。但是生物体系的高复杂性和水对THz波的强吸收,成为THz技术应用于生物研究中的重要瓶颈问题。本文以THz光子与分子间相互作用的能量匹配