论文部分内容阅读
光学系统采用非球面元件,不仅可以提高像差校正能力,而且可以减少光学元件的数目,简化光学系统的结构、降低光学系统的重量,因此非球面反射镜越来越多地应用于民用、军事、航天、天文等领域。随着空间科学技术的迅速发展,人们对光学系统的分辨能力和能量收集能力的要求越来越高,这需要大口径、高精度的非球面元件来完成。但是制造大口径、高精度的非球面需要与之相应的高精度加工设备和检测设备及方法,这给光学加工和检测领域带来了新的挑战。目前,大口径非球面反射镜加工技术多采用研磨抛光法。研磨阶段和抛光阶段的非球面面形检测技术主要有轮廓测量法和零位补偿干涉测量法。但是,在精研阶段及粗抛光阶段,普通轮廓仪测量精度和非球面面形误差在同一数量级,轮廓测量的精度不能满足要求,影响了加工效率;同时,由于非球面的面形误差较大,超出干涉仪的动态范围,且反射镜表面光洁度较低,这两种情况的出现使得零位补偿干涉测量法不能有效的进行全口径检测,同样会影响加工效率。轮廓仪的测量范围和干涉仪的测量范围未能有效衔接,两种测量方法都不能有效地指导该阶段反射镜的光学加工。夏克-哈特曼波前传感器具有较大的动态范围和较高的测量精度,对环境要求低,探测时间短,易于操作等优点,鉴于此,本文提出采用夏克-哈特曼法对精研阶段及粗抛光阶段的非球面反射镜面形进行非零位面形检测。本论文的研究工作主要包括以下四部分内容:1、增大夏克-哈特曼波前传感器动态范围方法的研究。从影响动态范围的要素入手,提出光斑归位法用于增大夏克-哈特曼波前传感器的动态范围。该方法不仅可以大幅度提高传感器的动态范围,而且扩大了传感器的适用范围。2、检测系统误差分离。通过对检测系统误差来源的理论分析,实现了系统误差的分离,并利用光线追迹软件对检测系统像差进行计算,制作了非零位检测非球面反射镜面形所需的参考文件。3、对检测系统的可行性进行了实验验证。利用自行制作的参考文件对口径为350mm的回转对称双曲面进行非零位检测。检测结果与零位补偿干涉测量结果相吻合。并采用非零位在轴检测的方法对矩形口径离轴非球面进行检测,检测结果同轮廓检验结果及零位补偿干涉测量结果进行了对比,对比结果再一次证明采用夏克-哈特曼波前传感器非零位检测非球面反射镜的可行性。4、采用补偿器实现夏克-哈特曼法的部分补偿和零位补偿。设计了用于部分补偿的Dall补偿器;并利用干涉仪补偿光路实现夏克-哈特曼法零位检测。对口径较大的探测波面进行了子孔径拼接检验试验。