【摘 要】
:
在实际场景中,视频图像采集常受多种环境因素影响,使得采集图像在局部或全局区域照度偏低,视觉效果差。即便在有光源补充的4K内窥镜场景,也难免因腔体深度、组织遮挡等因素,导致内窥镜图像的照度不均匀。目前,已有的亮度均衡算法为了达到更好的增强效果,大多数都以更高的算法复杂度为代价,此类算法难以应用于有实时需求的场景。因此,本文围绕4K低照度视频图像的亮度实时均衡问题,展开了对亮度均衡算法的研究、并行实现
论文部分内容阅读
在实际场景中,视频图像采集常受多种环境因素影响,使得采集图像在局部或全局区域照度偏低,视觉效果差。即便在有光源补充的4K内窥镜场景,也难免因腔体深度、组织遮挡等因素,导致内窥镜图像的照度不均匀。目前,已有的亮度均衡算法为了达到更好的增强效果,大多数都以更高的算法复杂度为代价,此类算法难以应用于有实时需求的场景。因此,本文围绕4K低照度视频图像的亮度实时均衡问题,展开了对亮度均衡算法的研究、并行实现以及实时应用等相关工作。首先,综合考量算法增强效果和实时性能,研究了两种具有较低复杂度和较好增强效果的融合局部信息的亮度均衡算法。(1)改进Sigmoid模型融合导向滤波器的亮度均衡算法。算法将改进的Sigmoid模型用于照度增益矩阵求取,将具有边缘保持特性的导向滤波器对增益矩阵滤波,最后将滤波后的增益矩阵用于照度增强。该算法是一种具有细节增强特性的分区亮度均衡算法。(2)改进Sigmoid模型结合高斯模糊的亮度均衡算法。算法将改进的Sigmoid模型直接用于照度增益矩阵求取和图像照度增强,将高斯模糊作为后处理步骤用于增强图像对比度。该算法是一种具有对比度增强特性的分区亮度均衡算法。实验证明,在增强效果方面,改进的两种算法在自然场景和内窥镜场景下都有突出的亮度均衡效果。与同类对比算法相比复杂度相对较低,适用于实时并行处理。其次,为使改进的两种算法能实时处理4K低照度视频图像,从算法优化和并行优化两个方面深度优化了两种算法的CUDA并行程序。通过对比实验证明,所采用的优化技术显著提高了算法执行速度,两种亮度均衡算法均可实时(≥25fps)处理4K视频。最后,本文根据内窥镜需求分析,详细设计了一种基于GPU的4K医学内窥镜视频实时增强系统,并将已优化的两种改进算法集成至内窥镜系统中,实现了实时采集、处理、显示和编码的整个流程。
其他文献
随着《普通高中数学课程标准》(2017年版)的修订,数学教育的目标转向了培养学生的数学核心素养,数学抽象作为数学核心素养之一受到越来越多的关注。但是发展却十分缓慢。一方面是在于当前对于初中学生的数学抽象能力调查不足,导致学生升入高中以后难以制定合适的数学抽象学习方案;另一方面在于学生进行数学抽象学习的过程仍缺乏清晰的路径说明。对于“即将步入高中的初三学生数学抽象能力如何”“影响数学抽象的因素有哪些
医用316L不锈钢作为一类常用的生物材料,其价格低廉、可加工性强,可应用于骨组织修复、人工关节、心血管支架和牙齿矫正等领域。但在临床医用过程中,人体内复杂生理环境会使其腐蚀性能降低,导致植入物腐蚀失效。此外,一般植入物与骨组织之间结合能力较差,植入物易松动、脱落,提升了感染风险。因此,选择合适的表面改性技术改善医用316L不锈钢表面力学性能及其生物服役环境下的耐腐蚀性、耐磨性和生物相容性具有重要的
金属腐蚀每年都会给世界造成大量的损失,然而金属的腐蚀不可避免。针对于金属腐蚀问题,本文中主要采用三种不同的方法,制备超疏水涂层,并着重研究超疏水涂层的制备方法及其耐腐蚀性能分析。主要结论如下:(1)在引入低表面能物质的两步电沉积制备超疏水涂层的实验中,通过实验发现,相比于裸铜的腐蚀电位(-0.27 V)、铜涂层的腐蚀电位(-0.34 V)和浸泡后的裸铜的腐蚀电位(-0.31 V),超疏水涂层的腐蚀
二氧化钒(VO2)是一种具有热致变色行为的特殊光电材料,低于相变温度(Tc=68℃)时,为单斜相,具有非金属绝缘特性,能使红外光穿透;当环境温度高于相变温度时,该晶体结构将转变为四方金红石相,具有金属导电特性,此时反射大部分红外光。这种相变特性使VO2在智能窗口、激光防护以及光电开关等领域具有广阔的应用前景。然而,VO2的理论相变温度为68℃,远高于室温,若实际应用必须通过外部加热来达到相变温度,
在信息技术迅速发展的今天,移动自组织网络已广泛应用于民用环境和军事领域中。同时,人工智能逐渐成为发展信息技术产业的新动力。智能多模网络通信系统,基于市场上广泛应用的网络通信系统,应用软件无线电技术,引入机器学习算法,作为一种自适应移动自组网络通信系统被应用于应急通信场景中。然而,在各种应急通信场景中,智能多模网络节点能量受限、网络拓扑变化差异大、通信时延要求较高,亟需一种与之相适配的路由协议。本文
Polar码是在2008年被提出的一种信道编码方案,该编码方案在理论上被证明可以达到香农信道容量。LDPC码和Turbo码这两种编码方案在u RLLC场景下与Polar码相比较,Polar码的复杂度低,同时性能更好,因此Polar码更适用于5G中的u RLLC(超高可靠、低时延通信)场景。在u RLLC场景中,端到端时延要求小于1ms,因此Polar码在u RLLC场景下的应用面临以下挑战:一是超
颗粒粒度的检测是颗粒材料生产过程中的重要一环,粒度参数的精准测量对于规范颗粒生产、准确分析颗粒材料性质具有重要意义。本研究通过计算机视觉技术分析含能片状颗粒图像,检测粒度参数即片状颗粒厚度。颗粒图像的分割作为颗粒粒度检测的前提,其分割效果直接影响颗粒粒度参数的测量精度。传统的图像分割算法和图像语义分割算法都很难将粘连的颗粒样本分割为独立的样本,从而导致现有的图像颗粒检测方法不适合测量粘连颗粒的粒度
当今世界,核工业技术得到了飞速发展,应用于各个领域。但因为管理不善导致的事故时有发生,尤其是放射源丢失的状况。为了快速定位搜寻到丢失放射源,科研人员做了不懈努力。早期人们定位丢失放射源主要是靠人工进行,这不仅危险性很高而且效率低下。后来人们通过移动机器人搭载相关设备遥操作进行放射源的搜寻工作,但也存在搜寻效率低下且不能自主化的问题。就如何更快的定位搜寻到放射源的情况,本文改进粒子滤波的定位算法,并
基于传统奈奎斯特采样定理的信号处理方法在获取高分辨率雷达图像时会产生大量数据,给硬件设备带来很大的压力。近年来,提出了一种新的、基于稀疏表示的信号处理方式——压缩感知。压缩感知利用信号的稀疏特性,可以在远小于奈奎斯特采样率的条件下获取信号的样本,通过非线性重建算法重建信号。该技术无需采集过多的冗余数据,可以提高合成孔径雷达成像质量,极大程度减少了存储、传输和处理成本,降低了硬件的要求,因此具有很好
进入21世纪以来,互联网技术、机器人技术以及虚拟现实(VR)技术等高新技术正随着人类科技的不断进步而飞速发展,机器人与操作人员之间的人机交互程度越来越高,也开始越来越多地代替人类在灾害救援、工业生产等领域发挥着重要作用。然而,当前的机器人在各种场景中实际应用时存在着机器人控制效率低、操作者沉浸感不强等诸多问题,这些问题不但影响着人机交互中的用户体验感,还制约着任务完成效率。针对以上问题,本文分析研