非散度型退化抛物方程(组)解的渐近行为

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:bm_imba
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究几类非散度型多重非线性抛物方程(组)奇性解的渐近行为.所考虑问题包括非散度型抛物方程解的临界指标与长时间行为,非线性梯度项对非散度型双退化抛物方程解的blow-up性质的影响,以及强耦合退化抛物方程组解的blow-up条件等.具体涉及四个具有多重非线性的非散度型抛物模型.首先通过对两类同时具有非线性源与吸收的非线性扩散方程中各种非线性机制之间相互作用的精细分析,得到不同非线性机制占优的情形下解的长时问性态;接着讨论含梯度项的双退化抛物方程中梯度项对解blow-up的影响;最后,研究一个强耦合退化抛物方程组的blow-up条件及blow-up集.第一章概述本文所研究问题的实际背景及国内外相关研究工作,并简要介绍本文主要内容.第二章首先考虑一类同时具非线性局部源和吸收的非散度型退化抛物方程ut=upΔu+auq-bur的齐次Dirichlet(?)司题.首先运用改进的Kaplan方法得到解的临界指标.然后通过对各非线性项的精细分析,得到关于整体解长时间行为的完全分类.当非线性源占优时,我们证明了当t→∞时整体解一致收敛于其正稳态解.特别得到非线性扩散或吸收占优时衰减解的一致渐近profile第二节讨论同时具非线性梯度源及吸收的非散度型方程ut=uPΔu+uq|(?)u|2-ur.同样得到了解的一致衰减速率及profile.第三章研究带梯度项的含源双退化抛物方程ut=umdiv(|(?)u|p-2(?)u)+λuq+γur|(?)u|p的齐次Dirichlet(?)问题.首先得到解的局部存在性.然后考查梯度项对解blow-up的影响,证明梯度项对解blow-up有无本质贡献取决于参数r是否达到或超过临界值pm-q/p-1第四章讨论具有齐次Dirichlet边值的强耦合退化抛物方程组ut=vp(Δu+af(u(xo,t))),vt=uq(Δv+bg(v(x0,t))).通过比较原理与单调性方法得到整体解存在的允分条件,并给出非整体解的blow-up集.
其他文献
本文主要研究了带梯度项的非线性微分不等式解的先验估计及非存在性。本文共分四章:第1章概述本文所研究问题的背景和国内外研究现状,并简要列出本文的主要工作。第2章主要应用试验函数法,分别在外区域和内区域上证明了带梯度项的非线性微分不等式解的先验估计,并得到了带有梯度项的双向非线性微分不等式的Harnack型不等式。首先,应用Serrin和Zou在文献[51]中的思想证明带梯度项的非线性微分不等式解u的
多年来,人们对多元逼近领域做了大量的研究工作,这个领域的研究至今充满活力.多元逼近之所以能吸引人并充满挑战性,在于诸多一元经典理论往往不能直接推广到多元情形.因此,许多研究方法诞生并发展了,诸如多元样条、径向基函数、有理逼近等.本文主要研究二元三次样条函数与非矩形网格上的多元分叉连分式插值问题.我们将具体内容概括为:在第一章,我们介绍一些预备知识,包括多元样条与光滑余因子协调法和连分式的定义、性质
"没有人会想到,设计可以成为了解这个国家经济、政治和文化命运的一份如此有趣的指南。然而这确实发生了"。《金融时报》的记者Clare Dowdy在15年前看完《捷克一百》展览后,如此点评。对于地处东西方之间,多年处于政治动荡之中的捷克而言,设计不是独立于社会之外,而是一直与社会变革有着紧密联系。
期刊
Box样条及Birkhoff插值问题在数值分析、逼近论等学科中有着广泛的应用.Box样条和多元截断幂分别作为B样条函数和一元截断幂的高维推广,与剖分函数有着重要联系,二者在离散几何、组合数学等多个数学领域有重要的意义Birkhoff插值是一类满足非逐个导数值条件的插值问题.它是Lagrange插值和Hermite插值的一般情形;主网格是以经典单纯形为结构的多元多项式插值适定结点组.它们在曲面外形设
小学是学生成长的关键时期,也是初步形成逻辑思维的关键阶段,良好的教学方式是促进小学生成长的保证。新课标明确指出,小学数学教学不仅要培养学生的理论知识,还要培养良好的数学应用能力和数学思维。因此,教师在进行课堂教学时要有意识地引导学生动手操作,利用学具操作满足小学生活泼爱玩的特点,推动小学数学教学的发展。
近年来,生物信息学逐渐渗透到生物学的各个研究领域,悄然改变着传统生物学的研究方式。其作用主要体现在两个方面:(1)借助计算机和数学方法处理海量的生物数据,通过数据挖掘发现其中隐藏的生物学规律。(2)通过数学建模的方法对传统生物学难题进行分析和预测,从而为生物学实验的设计提供帮助。作为生物信息学中一个重要的公开问题,蛋白质功能位点预测就是一个典型的通过数学建模方法对传统生物学问题进行分析和预测的例子
随着互联网数据时代的发展,刑事案件侦查中电子数据证据出现次数频发。本文通过介绍电子数据证据的概念、特点及基本原则,研究电子数据证据在刑事侦查中的法律规定及适用时出现的问题,并提出相关规范建议。
本论文包括两部分:第一部分采用分子动力学方法对Lennard-Jones流体的自扩散系数及粘滞维里系数进行了研究;第二部分采用分子动力学方法模拟研究了拥有幻数结构的纳米合金粒子的融化机制。论文第一部分采用Green-Kubo理论中相关函数方法和广义爱因斯坦关系,通过增加模拟粒子数目及扩大模拟时间,在中低粒子数密度下,精确计算第二维里系数,获得了高质量(具有低不确定度)的输运系数值;通过细致考察速度
本文主要利用算子理论的方法研究套代数框架下时变线性系统的稳定性问题.第二章简要介绍套代数框架下标准反馈系统的控制理论的基础知识和标准反馈系统稳定性的几个基本问题.第三章研究未给定双素分解的线性系统的稳定性问题.给出了这样的系统可被稳定的充要条件,这个条件不需要知道系统双素分解的任何信息.其次,考虑了同时稳定和鲁棒稳定问题.受Youla参数化的思想的启发,给出了所有可以和已知的系统被同时稳定的系统的
本文研究三类全空间上半线性微分方程解的存在性及多重性问题.本文由四章组成.第一章,阐述本文的研究背景和简要介绍本文的主要工作.第二章,讨论二阶Hamiltonian系统ü-L(t)u+Wu(t,u)=0,(?)t∈(?)同宿解的存在性.假设L(t)满足一定的紧性条件,在一类变化的Ahmad-Lazer-Paul条件下,利用对偶的喷泉定理,得到了无穷多个小能量同宿解的存在性.对于超二次情形,在一类变