论文部分内容阅读
李果实是冷敏型果实,在不适低温下会发生冷害现象,使果蔬贮藏品质下降,限制了低温技术的应用。近年来利用小分子信号物质增强果实抗冷性,有操作方便、绿色安全、成本低廉、效果稳定等优点。本研究以黑玻珀李果实作为材料,通过研究水杨酸(salicylic acid,SA)、脱落酸(abscisic acid,ABA)浸泡处理李果实后冷害指数及冷害发生率、总酚及抗坏血酸含量、超氧阴离子产生速率、丙二醛含量、H2O2含量、过氧化物酶(POD)、多酚氧化酶(PPO)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性、内源激素(SA、ABA)含量等指标的影响,探究其对抗冷性的作用,明确ABA是否参与SA提高李果实的抗冷机制中,以及H2O2或抗氰呼吸途径是否参与SA和ABA调节采后李果实低温耐受性过程中。1.为研究SA提高李果实抗冷能力过程中ABA的作用。分别采用SA、47.0μmol/LABA、5.0mmol/L 的 Na2WoO4、1.0mmol/L SA 结合 5.0mmol/L 的Na2WoO4处理、以及蒸馏水为对照组浸泡30min。对上述指标进行测定。结果表明,SA、ABA处理延缓果实冷害的发生,提高其活性氧代谢清除能力抗氧化酶能力及活性氧代谢清除酶活性,促进内源激素的合成。Na2WoO4、SA结合Na2WoO4处理组提高抗冷能力及内源激素含量的能力均低于对照组。说明SA和ABA可以延缓李果实的冷害,提高其抗冷性和活性氧代谢能力,并且SA对ABA可能存在单独作用机制。Na2WoO4显著抑制李果实的抗冷性,且该作用不受SA的影响,表明SA提高李果实抗冷性依赖于ABA。2.为研究H2O2是否参与SA和ABA调节采后李果实低温耐受性过程中。分别采用、1.0mmol/L SA 结合 50.0μmol/LDPI、47.0μmol/LABA 结合 50.0μmol/L DPI、5.0mmol/LNa2WoO4结合、12.5μmol/LH2O2、蒸馏水为对照组浸泡 30min。对上述指标进行测定。结果表明,SA、ABA处理结果以上述结果一致,H2O2可有效提高果实抗冷性。而SA结合DPI、ABA结合DPI、Na2WoO4结合H2O2对果实抗冷性起到了抑制作用。表明SA、ABA提高李果实抗冷能力都对H2O2这一第二信使存在依赖作用。Na2WoO4结合H2O2处理组的结果显示,抑制ABA合成后外源H2O2无法促进第二信使传递抗冷信号。阻断ABA合成所产生的低温耐受性下降的效果无法被外源H2O2恢复,H2O2不是ABA抗冷信号网络中唯一的关键因子。3.为研究抗氰呼吸是否参与SA和ABA调节采后李果实低温耐受性的过程中。分别采用 1.0mmol/L SA、47.0μmol/LABA、1.0mmol/L SA 结合4.0mmol/L SHAM、47.0μmol/L ABA 结合 4.0mmol/L SHAM、5.0mmol/L Na2WoO4 结合5.0mmol/L丙酮酸、蒸馏水为对照组浸泡30min。对上述指标进行测定。结果表明,SA结合SHAM对果实抗冷性有一定的抑制作用。抗氰呼吸参与到了 SA和ABA所诱导的采后果实抗冷信号网络中,但试验结果显示水杨酸信号产生的效应对抗氰呼吸途径的依赖性高于ABA信号。ABA对上述指标的处理结果优于ABA结合SHAM,部分优于Na2WoO4结合丙酮酸处理组,表明ABA的抗冷效应部分依赖于抗氰呼吸,但并非完全限制性因素,ABA诱导的抗冷能力增加可能还存在抗氰呼吸之外的其它限制因素。