论文部分内容阅读
作为高速电梯的重要装置,为了保障电梯的安全运行,在电梯轿厢的两侧下部安装电梯安全钳,用以保障电梯在故障情况下超速下滑或坠落时,使电梯轿厢可以安全夹持在导轨上,以避免事故的发生。随着超高建筑的日益普及,高速重载电梯(运行速度通常为48m/s,甚至会达到12.5m/s;载重量可达16000kg)得到了更加广泛的应用。因此,其对安全装置的制动性能和服役寿命提出了更加严苛的要求。与此同时,传统的刹车制动材料(灰铸铁)在摩擦热作用下往往出现过度磨损,摩擦系数下降,因而不能满足当代高性能电梯的安全性要求。在众多制动材料(比如橡胶材料、金属材料、粉末冶金、陶瓷材料、碳/碳复合材料)中,碳/碳(C/C)复合材料以其优异的高比强度、高比模量、高温力学性能、较低的热膨胀系数、优异的摩擦磨损性能等,而受到世界各国科技工作者的重视和应用。但是有关碳/碳复合材料用作高速电梯安全钳制动材料的研究却鲜有报道。为此,本文用化学气相渗透工艺制备了进口/国产碳纤维、不同纤维编织结构、不同基体热解碳种类、不同纤维体积分数的C/C复合材料,并采用现代分析测试手段,对它们的力学性能、热物理性能、摩擦磨损性能等进行了研究。主要研究内容和结论如下:1.优先采用进口碳纤维制备了不同预制体编织结构、不同纤维体积分数的C/C复合材料,并对其摩擦磨损性能进行了研究。(1)在碳纤维体积分数为25%、基体碳为光滑层热解碳时,随着摩擦载荷的增加,针刺结构的C/C复合材料摩擦系数随之增加。(2)碳纤维体积分数(38%和25%)对穿刺结构的C/C复合材料的摩擦系数和磨损量没有明显的影响。2.选用碳纤维体积分数为25%的针刺结构的预制体做碳纤维增强体,采用微正压和负压化学气相渗透工艺制备了光滑层热解碳和粗糙层热解碳基C/C复合材料,并对其力学性能和摩擦磨损性能等进行了研究。(1)光滑层热解碳基C/C复合材料在XY向和Z向上的压缩强度高达136.8MPa和198.0MPa,比粗糙层热解碳基C/C复合材料的各提高了66.6%和36.4%;(2)光滑层热解碳基和粗糙层热解碳基C/C复合材料的摩擦系数基本接近,约在0.16左右波动,且随摩擦时间延长而有所波动。(3)光滑层热解碳基C/C复合材料的耐磨性能要比粗糙层热解碳基复合材料的要好。3.采用国产碳纤维编织了针刺结构碳纤维预制体、并利用化学气相渗透和高温热处理工艺制备了光滑层结构的C/C复合材料。研究了不同热处理条件下C/C复合材料力学性能、物理性能和摩擦磨损性能。(1)热处理温度越高,C/C复合材料的尺寸稳定性越好。在1500℃测试条件下,13号样Z向的热膨胀系数为6.4×10-6/K,经过高温热处理后,其降至4.2×10-6/K;(2)在同种C/C复合材料(C/C复合材料与C/C复合材料摩擦副)刹车制动条件下,与高温热处理的11号样相比,低温热处理的13号样,其摩擦系数(0.300.45)的变化区间变窄(11号样为0.200.50)、制动时间(0.353.10s)的变短(11号样为0.353.37s),而制动能量(0.506.00kJ)则略有降低。低温处理的13号样在刹车制动的过程中,表现出更为稳定的摩擦磨损特性及良好的制动效率。(3)11号异种材料(11号C/C复合材料与45号钢摩擦副)摩擦副的制动时间约在0.352.67s之间波动,较11号同种材料摩擦副制动试验时减少了0.7秒左右;但与11号异种材料摩擦副相比,13号异种材料的平均摩擦系数的离散度略有增加。(4)低温热处理工艺制备的C/C复合材料安全钳摩擦制动块,综合性能优异,不仅完全满足高速电梯刹车制动的技术要求和试验大纲,而且刹车制动后,不仅其自身的外观结构完整、摩擦系数合适、磨损量小,而且对钢制导轨的质量和寿命没有也没有任何影响。图41幅,表14个,参考文献69篇。