【摘 要】
:
当今社会对信息的快速传输和处理能力有着极大的需求。过去的几十年里我们见证了电子器件的飞速发展。然而,电子器件所具有的热效应和器件间级联产生的信号延迟限制了其向更小化的发展。光学器件因其高速的光信号处理能力有着巨大的吸引力,但传统光学器件和电子器件的集成因二者尺寸不匹配而遇到阻碍,这是由于其中的介电光学器件因衍射极限的存在无法更进一步小型化。等离激元光子学(Plasmonics),使得在芯片尺度上光
论文部分内容阅读
当今社会对信息的快速传输和处理能力有着极大的需求。过去的几十年里我们见证了电子器件的飞速发展。然而,电子器件所具有的热效应和器件间级联产生的信号延迟限制了其向更小化的发展。光学器件因其高速的光信号处理能力有着巨大的吸引力,但传统光学器件和电子器件的集成因二者尺寸不匹配而遇到阻碍,这是由于其中的介电光学器件因衍射极限的存在无法更进一步小型化。等离激元光子学(Plasmonics),使得在芯片尺度上光电器件的集成成为可能。等离激元光子学中一个基本的概念就是表面等离激元(SPPs),一种沿着界面传播的电磁振荡,可以在亚波长尺度操控光。新型等离激元器件的开发和利用有两个重要的趋势:选择新颖材料替代传统材料以及设计全新结构。目前,以手性材料(介电手性)作为可选择的替代材料以及在光学波段设计功能性手性结构(结构手性)的研究都是开放的问题。因此本文将试图在手性界面基于介电手性以及在超材料中基于结构手性研究手性对电磁波的影响。对于介电手性,主要从数值上分析了手性波导中SPPs的性质;而对于结构手性,本文主要从模拟上设计一种纳米手性超材料,并在实验上应用电场调控其机械性质从而实现对光的动态操控。本文主要的研究内容如下:展示了一种手性-金属-手性(CMC)波导和金属-手性-金属(MCM)波导结构中SPPs的特性,得到了特殊的色散方程,其具有普适性:可以退化成非手性绝缘体-金属-绝缘体(IMI)波导和金属-绝缘体-金属(MIM)波导以及单界面SPPs的色散方程。通过给出色散曲线探究这两种结构中不同模式存在的频率截止现象,发现手性的引入会改变截止频率。通过计算SPPs的传播长度,发现手性的引入可提升其传输能力。研究了手性对SPPs的量子自旋霍尔效应和横向光力的影响。发现SPPs的激发条件随着介质的手性参数变化。揭示了横向光力、光扭矩与位于SPPs场中的手性粒子的手性之间的关系。背景介质强或弱手性的引入均有益于SPPs对手性粒子的分选。研究了各向异性双折射晶体-金属-手性介质构成的波导结构SPPs的色散特性。发现了手性-各向异性SPPs对手性参数实部和虚部的大小和正负具有传感能力。展示了各向异性在其中起到的关键作用,以及对手性异构体的可调节分选能力。该现象起源于SPPs和光轴的相互取向构成的外在手性。这种平板波导结构并不需要复杂的加工制备技术,却能够为基于芯片表面生物探测的实现提供可行性。最后,展示了一种可重构手性超材料的设计与制备,并且通过实验在近红外波段实现了外加电场对光的偏振操控。观测到超大二次电致旋光效应:圆双折射和圆二色性均随着外加静电场的二次方变化。0-18V外加电压下实验观测到垂直入射线偏光的偏振主轴旋转最大为16°和椭圆度最大为9°的变化。这种电机械超材料所展示的二次电致旋光效应强度比石英晶体大7个数量级。
其他文献
为了克服传统钢筋混凝土结构相对耗能能力较弱、抗剪储备不足等问题,钢管、型钢与混凝土组成的组合结构已广泛应用于建筑与桥梁结构中,但在钢-混凝土组合结构中仍未克服钢材的锈蚀问题。纤维增强复合材料(Fiber Reinforced Polymer,FRP)因轻质高强、便于施工、耐腐蚀性能好和抗疲劳性能好等特点,近年来逐渐替代钢材应用于新建混凝土结构中。将FRP管与钢骨、混凝土组合形成新型的组合柱,置于外
高重频大能量的亚纳秒脉冲激光在多普勒激光测风雷达、空间碎片激光雷达探测、汤姆逊散射诊断、医学激光美容等领域有着重要而广泛的应用。受激布里渊散射(SBS)是一种将纳秒长脉冲压缩至亚纳秒脉冲的简单高效的脉宽压缩技术,该技术与主振荡功率放大(MOPA)技术结合可以解决激光器在高重频、大能量、亚纳秒脉冲和高效率参数方面难以同时兼顾的问题。然而,目前SBS脉冲压缩的工作重复频率局限于200 Hz以下。为了获
金属材料是人类生产生活过程中最重要的材料之一,其通常作为结构材料应用。结构材料中力学性质是其首要考量,而在力学性质中,弹性性质是最基本但又最为基础的性能之一。根据弹性性质能进行多种优异性能的预测,如难熔合金中表现出的橡胶金属、生物医用特性等。目前0K下的二阶弹性常数可轻易的通过第一性原理计算获得,而目前对于外界条件(如高温、高压等)下的弹性常数获取困难。因此,如何快速评估材料在外界条件下的弹性性质
近年来,随着矿业、电镀、制革等与金属相关工业的快速发展,大量含重金属的工业废弃物、工业污水通过各种途径进入生物圈内,引发了一系列环境问题。由于重金属无法被生物降解,且能通过生物链循环进入植物体、动物体,最终会危害人类健康。随着人们生活水平的提高和环保意识的增强,高效、简易、低成本的重金属污染物处理措施成为了研究热点。水泥基材料被广泛应用于含重金属固废的固化处理,但处理后的固化体存在体积稳定性差、重
随着高通量基因测序技术的发展,人们已经积累了大量的蛋白质序列数据,但是对应的蛋白质结构预测及功能的分析与研究却不足。面对海量的蛋白质序列,如何高效预测对应的蛋白质结构和功能,成为生物序列分析的研究热点之一。蛋白质折叠识别的相关研究对预测蛋白质结构和分析功能有重要意义。近几十年来研究者们提出了众多面向蛋白质折叠识别的机器学习算法,这些算法大多关注于设计强鉴别性的向量化特征和分类器以获得更好的识别效果
现实世界的生物种群之间存在各种各样的相互作用关系,其中捕食关系是最常见的关系之一,其对生物种群的生存和发展起着至关重要的作用.本文将利用线性稳定性分析、中心流形理论和规范型方法,研究几类扩散捕食-食饵系统的余维二Turing-Hopf分支、Turing-Turing分支和Bogdanov-Takens分支,以及由这些分支揭示的时空斑图,来帮助理解和解释生物种群的时空动态.本文的主要工作如下:(一)
本文基于我国2010—2017年沪深A股上市民营公司的面板数据,探究了董事会社会资本与企业商业信用融资的关系。研究发现:在民营企业中,董事会社会资本水平越高的企业,越倾向于扩大其商业信用融资,并且基于信息不对称和委托代理理论,董事会社会资本对商业信用融资的促进作用是通过改善企业经营业绩和增加企业高管薪酬的机制实现的。进一步研究发现,在产品市场竞争激烈的地区,董事会社会资本对扩大企业商业信用融资的促
癌症是危害人类健康的主要疾病之一。至今为止,传统的手术,放疗和化疗依然是临床上最常用的治疗方法,但都存在着一些弊端或不足,如治疗效果差,副作用大等。近年来,在时间和空间上可控的光触发癌症治疗方式,即光控治疗,可以有效的提高治疗效果,引起了人们广泛的关注。特别是利用组织穿透深的近红外光(700~1100 nm)触发的光控治疗,更是成为了光控治疗领域的研究热点。目前,近红外光控治疗主要包括光控化疗、光
由于被测样品和观测环境的多变性,高通量和便携式显微镜已经成为了生物医学成像的新需求。但以折射光学为基础的传统显微镜往往受限于光学元件和架构件而难以实现高度集成。相比之下,近年来发展出的无透镜显微术无需显微镜组辅助,可通过衍射图像的反演计算实现样品的数字再现。该技术能同时兼顾大视场、高分辨率以及便携化等多个特性,并有望发展成以智能计算为主导的新一代显微成像技术。本文将针对无透镜显微系统的图像配准、收
对于许多实际的物理系统而言,有时不可避免地会遇到系统环境的突变或者受到一些随机扰动的影响,这些随机因素会导致系统结构与参数的改变。马尔科夫跳变过程,作为一种描述随机因素的有效手段,被广泛应用到系统模型中以实现对具有随机因素的实际物理系统的刻画。近年来,具有马尔科夫跳变过程的系统研究越来越受到国内外学者们的重视。另一方面,在控制系统研究领域,最基本且最重要的研究问题之一就是系统的稳定性分析与控制。因