论文部分内容阅读
随着信息技术的发展,微电子器件的应用越来越广泛。在使用中,电源开启与关闭会引起芯片温度波动,造成器件各层材料之间出现较大热应力。目前,封装行业对器件热载荷可靠性做了大量研究工作,而对功率载荷的研究很有限。与热载荷相比,功率载荷能真实地模拟芯片发热机制。因此,对功率载荷下芯片封装热应力的研究具有重要理论意义和实际应用前景。本文采用有限元分析软件ANSYS对叠层芯片尺寸封装(SCSP)的热应力分布进行研究。结果表明,在功率载荷条件下,芯片上的最大等效应力为143MPa,接近芯片的断裂强度160MPa,因此是造成芯片破坏的主要因素;芯片上的最大剪应力为65.4MPa,很容易造成芯片与封装材料分层;芯片工作时,其温度可达到412.09K,高温会影响芯片速度和可靠性。分析材料厚度与热膨胀系数对芯片可靠性的影响,结果表明,随着芯片体积增大,芯片温度有所下降,器件的可靠性随之增强;随着塑封料和粘结剂热膨胀系数的增大,芯片应力有所增大。通过对封装材料和结构的研究,优化封装模型,优化后芯片最高温度、最大应力和剪应力分别为408.48K,95.2MPa和35.4MPa,优化设计降低芯片和系统温度,起到提高器件性能和可靠性的作用。对不同工艺水平下的芯片进行功率载荷分析,结果表明,随着工艺水平的提高,器件集成度相应提高,芯片温度逐渐变大;当工艺达到0.13μm时,芯片生热率增大将导致芯片热量严重积累,使芯片性能和可靠性受到严重影响;工艺达到0.15μm时,应力达到足以破坏芯片的程度,需要对封装材料和系统结构重新设计。本文分析0.25μm工艺下的芯片热应力分布。与功率载荷下分析结果比较,热分析加载条件是温度,在载荷温度一致时更加方便;功率载荷分析加载条件是功率,在以热源生热进行应力分析时更精确。本文研究结果为进一步优化材料参数、改善器件性能提供了理论依据,对SCSP封装设计具有重要意义。