论文部分内容阅读
生产力的维持是人工林可持续经营的重要保障,而养分对于生产力的维持至关重要。随着林龄的增加,林木生长发育特征改变,其生长速率、养分需求、养分吸收、养分利用策略及养分循环规律随之发生变化,导致土壤特性和养分状况也发生改变。因此,研究人工林养分供应与林木生长关系随林龄的动态变化,对于人工林的可持续经营具有重要的指导意义。
磷(P)是植物生长发育必需的重要元素之一,其参与多种生理生化和组织形成过程。但我国亚热带区域土壤普遍缺P,且土壤P的可利用性极低,通常不能满足植物的生长所需,是植物生长的限制养分之一。P限制会促使植物改变根际P生物利用过程,从而提高P的生物有效性,如根际分泌物释放,可促进土壤P从难被利用的形态—活性无机P(exchangeable-P)、活性有机P(hydrolysable-P)和矿物质P(ligand-P)向易被利用的形态—可溶性P(soluble-P)转化。因此,阐明人工林生物有效P随林龄的变化及P的生物利用机制,对于人工林生产力长期维持中的P养分管理极为重要。
杉木是我国南方重要的速生用材树种,其造林面积和木材产量均居全国人工林之首。明确不同林龄杉木人工林养分利用策略的关键驱动因素、土壤P生物利用过程的调控机制、生态系统P分配和P循环特征,对提高杉木人工林的P利用效能、维持杉木人工林可持续经营具有重要的科学意义。但是,目前对于杉木人工林的养分利用策略、土壤P生物利用机制及生态系统P循环特征随林龄的动态变化尚不明确。因此,本研究采用时空替代法,选择不同林龄序列(3、8-11、16、21、25、29和32年)的二代杉木人工林,从林分养分限制转换入手,研究养分利用策略的动态变化,确定养分利用策略变化的关键驱动因素;研究根际与非根际土壤生物有效P的林龄动态,明晰根际与非根际土壤P生物利用过程的调控机理;研究人工林生态系统P分配和P循环特征,提出杉木林可持续经营的P养分管理措施。主要研究结果如下:
(1)随林龄增加,杉木人工林鲜叶P含量降低、鲜叶N:P比增加,且鲜叶和叶凋落物N:P比分别与其P含量显著负相关,这意味着杉木生长受P限制随林龄增加而增加。叶凋落物P含量随林龄增加而增加、叶P回收效率随林龄的增加而下降,这表明杉木人工林养分利用策略可能由幼林阶段的“节约保守”型转化为老林阶段的“奢侈”型。土壤养分供应与林木养分需求共同调控杉木人工林的养分利用策略。幼林中,杉木相对生长速率高,P需求高,且矿质层土壤P因吸收消耗而供应不足,导致高的叶P回收效率;而在老林中,杉木相对生长速率降低,P需求降低,且有机层土壤P增加而供应充足,导致低的P回收效率。这说明,当土壤养分供应不能完全满足林木生长需求时,林木内源养分的重吸收是保障林木生长需求的重要策略。明确土壤养分供应与林木养分需求的关系对养分利用策略的调控机制,为人工林养分的可持续经营管理提供理论基础。
(2)随林龄增加,杉木人工林的P年吸收量增加,土壤P吸收消耗增加,导致矿质层土壤中exchangeable-P和ligand-P含量降低;凋落物输入和分解增加,从而增加有机层土壤soluble-P、exchangeable-P和ligand-P含量;根际柠檬酸含量和土壤pH降低,促使根际正磷酸根离子与Fe和Al氢氧化物结合而沉淀,从而增加根际土exchangeable-P和ligand-P含量。然而,Hydrolysable-P含量无明显林龄变化,而与根际酸性磷酸酶活性显著正相关,这说明在所有林龄阶段,hydrolysable-P可能持续被酸性磷酸酶矿化为无机P形态(soluble-P、exchangeable-P和ligand-P),这有利于P再循环。随林龄增加,P逐渐参与到生物学循环中,被林木吸收的P逐渐归还到土壤中,使得土壤P储量得到恢复,人工林由P获取生态系统向P再循环生态系统转化。在杉木人工林实际经营过程中,延长轮伐期(>34年)可能是维持下一代或多代人工林可持续生产力P供应的有效措施之一,从而实现杉木人工林可持续经营。
(3)杉木人工林杉木各器官P储量随林龄增加而增加,且树干P储量占杉木P储量比例小于1/4,因此仅木材收获不是人工林P损失的主要途径,这说明,若将人工林采伐剩余物留在采伐地,使之分解归还于林地内,则可以归还3/4以上的因杉木储存而消耗的土壤P储量,避免P的损失。3年生幼林中,林下植被生物量接近于杉木生物量,这严重影响杉木幼苗的生长。该结果表明,在杉木人工林种植前三年进行林下植被清除,减少竞争,有助于杉木幼苗的快速生长,且应把清除的林下植被留存于林地内,避免P损失。地面凋落物层P储量随林龄增加呈先增加后下降的趋势,这说明,适当延长轮伐期有助于杉木从土壤中吸收的P通过凋落物归还到林地,为下一代或多代人工林提供P养分。矿质层土壤P储量随林龄增加呈先下降后上升的趋势,且30-60cm矿质层土壤P储量与林龄无显著相关关系,这表明植物的生长可能是不同土层土壤P储量林龄变化的重要原因。在人工林实际经营过程中,土壤P储量的林龄变化趋势,有助于指导制定人工林养分管理措施(如施肥)。因此,明确人工林生物量及P储量的林龄分配特征,对杉木人工林不同生长阶段的经营管理均具有重要的指导意义。
(4)随林龄增加,杉木人工林林分P年吸收量、P年存留量、P年重吸收量、P年凋落物归还量均先增加后稳定,而细根周转P年归还量无林龄相关性。这表明P生物循环越来越增强,由幼林阶段的依赖土壤P供应逐渐转换为老林阶段的依赖P重吸收和P再循环。杉木人工林植被P储量随林龄增加而增加,但其远远低于土壤P储量,该结果佐证了延长轮伐期能够使杉木人工林土壤P储量得到一定程度的恢复。杉木人工林地表径流P输出量随林龄增加而增加,这与林下植被覆盖度降低、有机层土壤P含量增加、P溶解度增加密切相关。那么,保持一定的林下植被覆盖度,可能是减少地表径流P输出的重要途径之一,从而保障杉木人工林可持续经营。
通过对杉木人工林养分限制、养分利用策略、P生物利用机制及P循环特征的研究,得到如下的理论框架。幼林阶段,杉木相对生长速率高,P需求量高,生物量累积速率快,杉木P储量增加,矿质层土壤P因吸收而降低,又由于该阶段凋落物P归还量极低,导致土壤P储量下降,所以,杉木会通过高的P回收效率利用内源P库、增加根际分泌物提高土壤P的生物有效性、增加细根生物量获取更多的土壤P,满足其快速生长所需的P养分。该生长阶段,杉木人工林以P获取为主,属于较为开放的P循环特征。随林龄增加,杉木相对生长速率降低,P需求量降低,土壤P库的消耗减少,且凋落物P归还量增加,成为杉木生长的主要P源,与此同时,杉木P回收效率降低增加P归还、根际分泌物减少降低土壤P的生物有效性而使P累积、细根生物量减少降低对土壤P的吸收消耗,因此,促使杉木人工林土壤P储量得到恢复而增加。杉木人工林P循环随林龄增加逐渐以P再循环为主,P循环逐渐趋于闭合。
磷(P)是植物生长发育必需的重要元素之一,其参与多种生理生化和组织形成过程。但我国亚热带区域土壤普遍缺P,且土壤P的可利用性极低,通常不能满足植物的生长所需,是植物生长的限制养分之一。P限制会促使植物改变根际P生物利用过程,从而提高P的生物有效性,如根际分泌物释放,可促进土壤P从难被利用的形态—活性无机P(exchangeable-P)、活性有机P(hydrolysable-P)和矿物质P(ligand-P)向易被利用的形态—可溶性P(soluble-P)转化。因此,阐明人工林生物有效P随林龄的变化及P的生物利用机制,对于人工林生产力长期维持中的P养分管理极为重要。
杉木是我国南方重要的速生用材树种,其造林面积和木材产量均居全国人工林之首。明确不同林龄杉木人工林养分利用策略的关键驱动因素、土壤P生物利用过程的调控机制、生态系统P分配和P循环特征,对提高杉木人工林的P利用效能、维持杉木人工林可持续经营具有重要的科学意义。但是,目前对于杉木人工林的养分利用策略、土壤P生物利用机制及生态系统P循环特征随林龄的动态变化尚不明确。因此,本研究采用时空替代法,选择不同林龄序列(3、8-11、16、21、25、29和32年)的二代杉木人工林,从林分养分限制转换入手,研究养分利用策略的动态变化,确定养分利用策略变化的关键驱动因素;研究根际与非根际土壤生物有效P的林龄动态,明晰根际与非根际土壤P生物利用过程的调控机理;研究人工林生态系统P分配和P循环特征,提出杉木林可持续经营的P养分管理措施。主要研究结果如下:
(1)随林龄增加,杉木人工林鲜叶P含量降低、鲜叶N:P比增加,且鲜叶和叶凋落物N:P比分别与其P含量显著负相关,这意味着杉木生长受P限制随林龄增加而增加。叶凋落物P含量随林龄增加而增加、叶P回收效率随林龄的增加而下降,这表明杉木人工林养分利用策略可能由幼林阶段的“节约保守”型转化为老林阶段的“奢侈”型。土壤养分供应与林木养分需求共同调控杉木人工林的养分利用策略。幼林中,杉木相对生长速率高,P需求高,且矿质层土壤P因吸收消耗而供应不足,导致高的叶P回收效率;而在老林中,杉木相对生长速率降低,P需求降低,且有机层土壤P增加而供应充足,导致低的P回收效率。这说明,当土壤养分供应不能完全满足林木生长需求时,林木内源养分的重吸收是保障林木生长需求的重要策略。明确土壤养分供应与林木养分需求的关系对养分利用策略的调控机制,为人工林养分的可持续经营管理提供理论基础。
(2)随林龄增加,杉木人工林的P年吸收量增加,土壤P吸收消耗增加,导致矿质层土壤中exchangeable-P和ligand-P含量降低;凋落物输入和分解增加,从而增加有机层土壤soluble-P、exchangeable-P和ligand-P含量;根际柠檬酸含量和土壤pH降低,促使根际正磷酸根离子与Fe和Al氢氧化物结合而沉淀,从而增加根际土exchangeable-P和ligand-P含量。然而,Hydrolysable-P含量无明显林龄变化,而与根际酸性磷酸酶活性显著正相关,这说明在所有林龄阶段,hydrolysable-P可能持续被酸性磷酸酶矿化为无机P形态(soluble-P、exchangeable-P和ligand-P),这有利于P再循环。随林龄增加,P逐渐参与到生物学循环中,被林木吸收的P逐渐归还到土壤中,使得土壤P储量得到恢复,人工林由P获取生态系统向P再循环生态系统转化。在杉木人工林实际经营过程中,延长轮伐期(>34年)可能是维持下一代或多代人工林可持续生产力P供应的有效措施之一,从而实现杉木人工林可持续经营。
(3)杉木人工林杉木各器官P储量随林龄增加而增加,且树干P储量占杉木P储量比例小于1/4,因此仅木材收获不是人工林P损失的主要途径,这说明,若将人工林采伐剩余物留在采伐地,使之分解归还于林地内,则可以归还3/4以上的因杉木储存而消耗的土壤P储量,避免P的损失。3年生幼林中,林下植被生物量接近于杉木生物量,这严重影响杉木幼苗的生长。该结果表明,在杉木人工林种植前三年进行林下植被清除,减少竞争,有助于杉木幼苗的快速生长,且应把清除的林下植被留存于林地内,避免P损失。地面凋落物层P储量随林龄增加呈先增加后下降的趋势,这说明,适当延长轮伐期有助于杉木从土壤中吸收的P通过凋落物归还到林地,为下一代或多代人工林提供P养分。矿质层土壤P储量随林龄增加呈先下降后上升的趋势,且30-60cm矿质层土壤P储量与林龄无显著相关关系,这表明植物的生长可能是不同土层土壤P储量林龄变化的重要原因。在人工林实际经营过程中,土壤P储量的林龄变化趋势,有助于指导制定人工林养分管理措施(如施肥)。因此,明确人工林生物量及P储量的林龄分配特征,对杉木人工林不同生长阶段的经营管理均具有重要的指导意义。
(4)随林龄增加,杉木人工林林分P年吸收量、P年存留量、P年重吸收量、P年凋落物归还量均先增加后稳定,而细根周转P年归还量无林龄相关性。这表明P生物循环越来越增强,由幼林阶段的依赖土壤P供应逐渐转换为老林阶段的依赖P重吸收和P再循环。杉木人工林植被P储量随林龄增加而增加,但其远远低于土壤P储量,该结果佐证了延长轮伐期能够使杉木人工林土壤P储量得到一定程度的恢复。杉木人工林地表径流P输出量随林龄增加而增加,这与林下植被覆盖度降低、有机层土壤P含量增加、P溶解度增加密切相关。那么,保持一定的林下植被覆盖度,可能是减少地表径流P输出的重要途径之一,从而保障杉木人工林可持续经营。
通过对杉木人工林养分限制、养分利用策略、P生物利用机制及P循环特征的研究,得到如下的理论框架。幼林阶段,杉木相对生长速率高,P需求量高,生物量累积速率快,杉木P储量增加,矿质层土壤P因吸收而降低,又由于该阶段凋落物P归还量极低,导致土壤P储量下降,所以,杉木会通过高的P回收效率利用内源P库、增加根际分泌物提高土壤P的生物有效性、增加细根生物量获取更多的土壤P,满足其快速生长所需的P养分。该生长阶段,杉木人工林以P获取为主,属于较为开放的P循环特征。随林龄增加,杉木相对生长速率降低,P需求量降低,土壤P库的消耗减少,且凋落物P归还量增加,成为杉木生长的主要P源,与此同时,杉木P回收效率降低增加P归还、根际分泌物减少降低土壤P的生物有效性而使P累积、细根生物量减少降低对土壤P的吸收消耗,因此,促使杉木人工林土壤P储量得到恢复而增加。杉木人工林P循环随林龄增加逐渐以P再循环为主,P循环逐渐趋于闭合。