基于光致产酸剂调控的光控智能高分子材料系统

来源 :天津大学 | 被引量 : 0次 | 上传用户:liuzhaozhihui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光响应型材料由于其远程可控、调控精准、清洁易得等优点而备受关注。光致产酸剂(PAGs)在光照下分解产生酸(H+),在诸多领域得到广泛应用而备受瞩目,包括光刻蚀、聚合引发、保护基团化学、生物探测、控制酶活性、光动力疗法等领域。本论文通过将pH敏感响应型高分子体系与PAGs的光致产酸能力相结合,赋予无光敏感性能的高分子材料光响应性能,为研发新型光响应型高分子体系提供新思路。本文首先设计并制备了一种光致产酸剂——4-苯基二甲基锍三氟磺酸盐(APDST),它可以在光辐照时产生氢离子。随后我们制备了酸敏感酰腙键交联形成的ADH@P(DAAM-HEA)水凝胶和酸敏感硼酯键交联的PVA-Borax水凝胶,将光致产酸剂APDST引入水凝胶中,通过APDST的光致产酸使得酰腙键或硼酯键水解,由此可以光控实现水凝胶的表面刻蚀、颜色转变或凝胶溶胶转变。我们还制备了含有咪唑基团、络合交联的P(VI-AM)水凝胶,向水凝胶中引入光致产酸剂APDST后,通过光辐照使水凝胶内部咪唑基团质子化,破坏络合作用,从而实现P(VI-AM)水凝胶的光控形状记忆功能。这些研究证实了 PAGs与酸敏感水凝胶的结合,可以赋予无光敏感性能的水凝胶光响应性能。基于光致产酸剂APDST,本文合成了带有双键的MAPDST作为可聚合的光酸单体,与酸响应降解单体TTMA、亲水性大单体mPEGMA共聚,通过RAFT聚合调控,制备了具有不同光酸单体含量和亲疏水段比例的功能性光控酸敏感聚合物[P(mPEGMA-b-P(MAPDST-co-TTMA))PPMT]。利用1H NMR、FT-IR 和 GPC等测定PPMT的分子结构和化学组成。随后采取纳米沉淀法制得PPMT纳米粒(PPMT NPs)和负载 DOX 的 PPMT 纳米粒(DOX/PPMT NPs)。利用 TEM 和DLS研究PPMT自组装纳米粒的形态与粒径分布,结果表明PPMT NPs具有良好的球形形态和均一的粒径分布。此外,光酸MAPDST链段可以在紫外光辐照下断裂快速产生氢离子,促使酸敏感的疏水性TTMA链段不断水解成亲水性链段,导致纳米颗粒的显著溶胀和最终分解。实验表明载药纳米粒具备光可控持续释放性能,这些研究表明了 PAGs引入酸敏感纳米粒中,可实现纳米载体的光响应性、可控释放药物的能力。总之,本研究将光致产酸剂与酸敏感的聚合物凝胶和高分子纳米载体结合,赋予了无光敏感性能的高分子材料体系光控智能响应性能,相关研究结果有望为光控酸敏感聚合物和相应光敏功能纳米材料的开发和应用提供新方案。
其他文献
随着移动通信、航空航天、交通运输及军事装备等领域的技术进步,各种高比能动力电池的开发已成为经济发展的迫切需求。Li/CFx电池具有极高的理论比能量(2180 Wh kg-1)、高安全性、稳定的放电电压、低的自放电率(<0.5%/年)等优点,得到了国内外的广泛关注。为了对于Li/CFx电池放电的动力学过程进行深入的探索,本文以密度泛函理论和分子动力学为工具,探究了Li/CFx电池中电解液和电极/电解
学位
近几十年来,利用微流控技术制备微颗粒引起了人们的广泛关注。能够大规模生产微小液滴的台阶式乳化微装置成为实现微流控技术从实验室走向工业生产的重要突破口,然而相关机理尚不太明确。本文利用高速摄像系统,探究了台阶式微流控装置内气泡和液滴的生成机理与调控机制。主要内容如下:研究了台阶式微流控装置中气泡生成的动力学机制。探究了气泡生成过程的动态界面演化现象。研究发现,气泡的生成过程可分为扩展、夹断和蓄能三个
学位
混合醇胺溶液作为二氧化碳吸收剂,具备价格低廉、环境友好、吸收效率高、再生能耗低等优点,近年来受到了广泛关注。本文对混合醇胺溶液的热力学性质进行研究,不仅能补充醇胺溶液的基础物性数据,更能为混合醇胺溶液在二氧化碳捕集工业中的应用提供必要的理论依据。实验采用管式密度计和乌氏黏度计测量混合醇胺溶液的密度及黏度。首先测量了五种醇胺(哌嗪(PZ)、2-氨基-2-甲基-1-丙醇(AMP)、2-乙氨基乙醇(EA
学位
丙酮缩甘油(2,2-二甲基-1,3-二氧戊环-4-甲醇,Solketal)是一种用途广泛的有机化合物,常被用作万能溶剂、重要的有机合成中间体和环境友好的汽油添加剂。由于合成原料丙酮和甘油价格低廉,丙酮缩甘油的合成具有潜在的经济效益。为改进传统的丙酮缩甘油生产工艺单程转化率低、生产过程繁琐、能耗大投资高等问题,本课题组对丙酮缩甘油的反应精馏合成过程已经进行了详细的设计研究,利用反应精馏隔壁技术进行了
学位
为进一步探究流化床换热防垢节能技术的强化传热和防、除垢机理,本文设计并构建了一套下行循环流化床蒸发装置,利用加速度传感器,系统地考察了多相流的碰撞行为和传热性能。首先,对多相流的碰撞加速度信号进行了时域和频域分析,确定了下行床中多相流碰撞的特征频率范围。然后,系统地考察了下行床内颗粒加入量、循环流量、热通量及颗粒类型等操作参数对颗粒碰撞行为和传热性能的影响。研究结果表明,颗粒和液相碰撞信号的特征频
学位
核能在广泛应用的同时带来了不可忽略的环境问题。在乏燃料后处理的过程中,经过U、Pu回收工艺的放射性废液往往无法达到排放或地质储存的标准,需要进行进一步的处理。其中放射性核素铯因其半衰期较长,放射性强、污染程度高,成为主要的待分离目标元素;与此同时,铯元素也是一种可广泛利用的重要资源。因此设计并开发一种从放射性废液中分离富集铯的工艺具有重要的技术和经济价值。本课题通过水热法在不同条件下制备出一系列的
学位
目前,锂离子电池已被广泛地应用于电动汽车、电动工具和各种电子产品之中。锂离子电池所使用的传统液态电解质存在许多安全性隐患,如热稳定性不好、无法抑制锂枝晶生长、原子选择性差、易漏液、易燃烧等。因此开发新一代高性能固态电解质,对发展新一代储能技术和拓宽锂离子电池的应用领域均具有重要的意义。在众多固态电解质材料中,聚合物电解质材料具有重量轻、易加工、材质柔软等优点,运用于全固态锂电池中,可以实现高安全、
学位
光聚合具有无污染、能耗低、操作方法简便等优势。机械性能类似于软组织的聚乙二醇(PEG)水凝胶已广泛应用于组织工程和药物输递领域。与PEG水凝胶相比,PEG纳米凝胶不仅保持了PEG水凝胶的溶胀性和生物相容性,而且其较大的表面积可以结合受体特异性分子进行靶向释放。本研究以聚乙二醇二丙烯酸酯(PEGDA)为单体,采用532 nm激光聚合在水和乙醇中制备PEG纳米凝胶,阐明单体在不同溶剂中存在状态以及聚合
学位
近年来,有机-无机杂化钙钛矿太阳能电池凭借其简单的制备工艺、灵活的器件结构以及较高的光电转换效率,受到工业和学术界广泛关注。而设计开发新型高效的空穴传输材料,对于促进钙钛矿太阳能电池发展,实现其商业化应用有重要意义。本文以苯并二噻吩作为中心核,通过溴化、Suzuki偶联等反应引入三芳胺基团和不同长度的烷基侧链,合成得到了三个新型空穴传输材料4,4’-(4,8-二甲氧基苯并[1,2-b:4,5-b’
学位
清洁高效的氢能有望成为新能源。电解水制氢技术成熟,过程中不产生污染环境的物质,有广阔的应用前景。电解水过程中,电极极化使电解装置需要的电压升高增加了电解水的成本,所以需要迫切寻求一种高效的催化剂来降低电极极化。目前商用的催化剂多为贵金属催化剂,这会进一步增加催化剂成本。目前研究热点集中在研发一种高性能、稳定且廉价的非贵金属催化剂。但是析氢催化剂和析氧催化剂最佳工作区间不相同会导致电解水装置成本增加
学位