论文部分内容阅读
陶瓷材料具有低密度、高弹性模量、高硬度以及耐高温性等优良特点,成为未来材料行业重点研究和发展对象。Al2O3-ZrO2复合陶瓷在保留各组分优良特性的基础上实现性能互补,因此力学性能获得有效提升。然而传统弥散型Al2O3-ZrO2复合陶瓷相变增韧产生的大量微裂纹导致材料整体结构的破坏,很难实现强度与韧性的同时提升。目前,合理的结构设计是改善这一现象的有效途径之一,并且研究不同结构的复合陶瓷力学性能差异,可以为合理的结构设计提供基础理论依据,从而制备出力学性能优异的复合结构陶瓷。本论文设计提出三维网络Al2O3-ZrO2复合陶瓷和层状Al2O3-ZrO2复合陶瓷两种不同复合结构,探究结构设计对复合结构陶瓷的力学性能影响,特别关注Al2O3-ZrO2复合陶瓷在断裂时裂纹的扩展、偏转情况,以及Al2O3-ZrO2复合陶瓷内部缺陷对裂纹的形成、偏转和力学性能的影响。三维网状Al2O3-ZrO2复合陶瓷由三维网络基体和二次相填充体分两步构建完成,实验探究不同组分配比、海绵孔径尺寸、填充量以及烧结工艺对三维网络Al2O3-ZrO2复合陶瓷孔隙率、相对致密度、力学性能以及裂纹扩展的影响。结果表明,以Al2O3作为三维网络基体框架原料,填充85%ZrO2+15%Al2O3(ATZ)浆料,经过真空热压烧结制备的三维网络Al2O3-ZrO2复合陶瓷内部结构发生较大形变,形成三维Al2O3不规则块状镶嵌结构,界面具有较高的结合强度,对于裂纹的偏转、分散以及能量消耗十分有限,平均抗折强度仅为266.47MPa,相对致密度为98.3%。但连续三维ATZ相仍具有良好的形变能力,将局部与整体联系在一起,使三维网状Al2O3-ZrO2复合陶瓷形变能力明显大于弥散型Al2O3-ZrO2复合陶瓷,并且断裂韧性达到传统弥散型Al2O3-ZrO2复合陶瓷标准,为3.24MPa·m1/2。表明三维网络结构设计可有效实现材料的增强增韧,但受限于工艺条件而未达到设计要求。采用辊压方式制备不同厚度(120μm-180μm)Al2O3基体层,并在Al2O3基体层表面喷涂厚度为10μm ZrO2界面层,通过常规烧结获得层状Al2O3-ZrO2复合陶瓷。研究不同厚度Al2O3基体层形成的层状Al2O3-ZrO2复合陶瓷力学性能变化。借助电子扫面显微镜(SEM)、加载载荷曲线以及工业CT分析层状Al2O3-ZrO2复合陶瓷在失效过程中裂纹的扩展情况,并得出裂纹扩展与材料强韧化机理之间的相互关系。结果表明,当Al2O3基体层厚为120μm时,1500℃无压烧结形成的层状复Al2O3-ZrO2合陶瓷力学性能优良,其抗折强度为426.63MPa,断裂韧性为6.18 MPa·m1/2。但由于较薄的ZrO2以及层间较高的结合强度,材料在断裂过程中裂纹未能在层间界面发生较大的偏转,断面整齐且平整,表现为脆性断裂。通过浸涂方法在Al2O3基体层与ZrO2界面层之间引入石墨,烧结过程中石墨分解可有效弱化层状Al2O3-ZrO2复合陶瓷层间结合强度。结果表明,石墨浆料固含量为0.5wt%时,层状Al2O3-ZrO2复合陶瓷平均相对致密度为94.3%,平均抗折强度为343.78MPa,平均断裂韧性可达7.11 MPa·m1/2。材料在断裂过程中,裂纹在层间发生较大的偏转以及分散,增加裂纹的扩展路径和能量消耗,材料表现为韧性断裂。分析得出结论,影响层状Al2O3-ZrO2复合陶瓷的抗折强度与层厚比和界面残余应力有关,裂纹的偏转以及分散与层间结合强度有关,断裂韧性则与材料断裂过程所消耗的总能量以及弹性模量有关。