堆叠场景下多类别目标物识别与抓取方法研究

来源 :西南科技大学 | 被引量 : 1次 | 上传用户:qq165247254
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技和社会的发展,机器人逐渐走进柔性制造、医疗康复、仓储零售、农业采摘、家庭服务等应用领域。智能抓取是机器人实现智能化的关键技术之一,也是保障机器人适应复杂作业场景必须要解决的关键问题。但在复杂非结构化环境中,存在物体种类多样、位姿随机、物体间遮挡堆叠的情况,严重影响了机器人目标识别与抓取能力。本课题围绕多物体堆叠场景下目标检测识别和物体抓取位姿估计等技术进行了研究,实现了一种堆叠场景下机器人多目标识别与抓取方法,并在堆叠场景下开展了机器人抓取实验。本文的主要研究工作如下:(1)构建了机器人抓取系统框架。针对机械臂与相机之间的手眼标定,运用奇异值分解方法,设计了一种以标定球为标定件的标定方法,实现了抓取系统的手眼标定。(2)研究基于深度学习的堆叠目标检测方法。设计了基于旋转矩形框改进的R-Yolov3堆叠目标检测网络,解决了利用Yolov3网络输出水平检测框时堆叠物体的边界表达模糊的问题,并在网络中引入了卷积注意力机制模型,使改进后形成的网络更适用于堆叠物体的定位和类别识别;构建了多类物体堆叠的数据集,并提出了一种模拟散乱物体堆叠数据增强方法。基于该数据集对网络进行训练,开展了堆叠场景下多目标检测定位和类别识别测试实验,检测精度达到了92.7%,验证了模型的有效性。(3)研究机器人抓取位姿估计方法。通过引入有向锚框机制,设计了一种基于Res Net-50网络的抓取位姿估计网络模型,对物体的抓取框参数直接回归预测。基于聚类算法的思想设置了有向锚框的超参数,并在训练过程中对抓取锚框的匹配策略进行了优化。利用康奈尔抓取数据集开展了网络模型的训练和测试实验,实验表明物体抓取位姿估计精度达到了97.3%。(4)搭建了机器人抓取系统实验平台,通过本文方法构建了抓取系统的软件算法部分。开展了多类物体堆叠情况下的物体识别抓取实验,验证了堆叠目标检测识别、抓取位姿估计的方法的有效性。实验结果显示,本文方法能够有效完成堆叠场景下多类物体的识别与抓取任务。本文提出的多物体堆叠场景下物体识别和抓取方法,能够有效的实现对堆叠物体的检测识别和位姿估计,对丰富机器人手眼协调抓取技术有一定的理论意义,在工业分拣、服务机器人等任务场景中有一定的应用价值。
其他文献
室内外空气污染已经成为现代社会普遍关注的问题。尽管在过去的几十年中,世界范围内颁布了许多关于空气质量的政策和法规,但空气污染仍然在对人类健康产生负面影响。挥发性有机化合物(Volatile Organic Compounds)是大气污染之一,它的治理问题引起了研究者的关注。二氧化钛(TiO2)半导体光催化材料具备高效无毒、稳定性好、经济环保等优势,因此使用TiO2作为光催化剂降解污染物是解决大气污
学位
图像语义分割是一项关键视觉技术,其目的是为图像中所有像素分配对应的语义标签。经过多年发展,图像语义分割已取得了不少成果,但由于分割任务的复杂性、以及深度学习的局限性等原因,仍有许多问题待解决。例如,无法很好保存边缘细节特征;在提取语义上下文和充分利用特征信息方面效果不佳,导致特征表达能力不足;网络参数量过大。因此,针对以上问题,本文对基于卷积神经网络的图像语义分割进行深入研究,并从解决皮肤镜图像病
学位
核事故发生时,由于核环境内部辐射剂量过大,人类无法进入现场进行后续操作,核应急作业机器人作为少数能进入核事故现场的机器,在解决事故时起到重要作用。部分核应急作业机器人上带有图像采集模块,采集到的图像数据是机器人对内部环境感知的重要依据。然而,核环境中的高能粒子会同图像采集模块中的半导体材料发生辐射效应,导致采集到的图像中含有大量核噪声亮斑。本论文针对灰度核噪声和彩色核噪声分别提出了对应的降噪算法,
学位
作为非语音音频分类任务中最重要的研究领域之一,声音事件识别被广泛应用于音频监控、音频场景分析、生物声学监测、医疗诊断等领域。声音是信息传播的主要途径,通过分析声音中携带的信息指导人类的生活和生产,提高生活生产效率。传统的特征提取器在设计的时候需要研究者具有大量的先验知识以及进行复杂的计算;传统的人工设计的网络模型对声音进行建模,其精度难以达到令人满意的结果。本文将使用深度学习的方法解决声音事件识别
学位
现代社会中,人们对安全隐私更为看重,对独居老人的看护系统也愈加智能化与人性化,深度学习算法的融入也使得其市场应用前景更为广阔。看护系统中人体异常行为识别算法也同时成为了大量国内外学者的热门研究内容。为了提升老人看护系统的精确性且同时能够保障用户的隐私安全,本文提出了一种基于红外光场景的家庭看护的异常行为智能识别方案,此方案由人体目标提取处理、训练行为识别网络以及异常行为判别等环节组成。在人体目标提
学位
由于生物特征识别技术在保持便携性的同时,比传统的个人身份验证方式有更高的安全性,所以得到了广泛的关注。其中,依靠手指静脉图像进行身份识别的技术因在现有的生物特征识别技术中拥有更高的安全性而快速发展起来。人工设计算子表达手指静脉图像中纹理信息的方法由于处理步骤繁琐并且鲁棒性和泛化性较弱,逐渐被特征提取能力更强的卷积神经网络方法替代,但是与此同时,这也提高了对运行设备算力的要求。因此,需要研究卷积神经
学位
人体异常行为监测对公共区域安全及城市安防建设意义重大。传统监控方式主要通过人工复检,易出现误检、漏检等问题。同时固定监控摄像头监测范围有限,灵活性不足。针对上述问题,面向航拍场景结合对环境变化鲁棒性较好的人体姿态信息,本文研究了基于图卷积的航拍人体异常行为识别。(1)针对嵌入式平台存储与运算性能有限的问题,设计了一种轻量化人体姿态估计网络。基于高分辨率表征学习网络(High-Resolution
学位
推进剂是火箭发射的重要组成部分,研究推进剂燃烧过程中的气体成分、温度和充分燃烧条件具有重要的指导意义,也是推进剂高效有序燃烧的基础。在燃烧场诊断技术中,温度是研究燃烧机理的重要参数之一。定性或定量研究推进剂燃烧过程中的二维温度场分布,对深入了解火焰燃烧形态、火焰燃烧成分检测和燃面制备等具有重要意义。本文将利用双色平面激光诱导荧光测温技术测量酒精灯和推进剂的燃烧火焰二维温度。设计双色平面激光诱导荧光
学位
随着全球气候变暖和环境污染日益严重,节能减排已成为全世界关注的问题。锂电池因其具有良好的电化学性能,已大规模应用于光伏储能电站、新能源汽车等场景。在不同的应用场景下,所使用的荷电状态(SOC,State of Charge)区间及充放电倍率不一致,而使用合适的区间及充放电倍率可有效减缓锂电池的老化,因此明确锂电池工作的SOC区间及充放电倍率对其老化的影响程度是目前需解决的关键问题之一。本文针对不同
学位
随着科技的发展,数字图像已成为人们获取信息的重要载体,然而由于采集设备的固有缺陷或传输设备的影响,所获取的图像通常会受到噪声的污染,可能导致后续对图像的理解产生偏差。为从图像中获取准确的信息,对图像进行去噪处理的研究应运而生。在各类图像去噪问题中,医学超声图像中存在的斑点噪声影响了图像的质量,不利于医生对图像关键信息的准确掌握。因此,抑制医学超声图像中的斑点噪声是一项重要的研究内容。在现有的众多超
学位