论文部分内容阅读
随着Internet技术的迅速发展,电子商务应用不断深入。随着电子商务规模的进一步扩大,电子商务为用户提供越来越多选择的同时,其结构也变得越来越复杂。人们在面对海量信息时往往显得很迷茫,把握不住重点,这就导致了电子商务个性化推荐系统的出现。个性化推荐不仅能快速地帮助客户在繁多复杂的信息中找到所需要的商品信息,而且还能将较多的商品信息进行比较从而帮助客户进行判断。然而,现有的推荐系统存在推荐个性不突出、推荐的关联性不强与推荐的实时性不强等问题。本文主要研究基于协同过滤的电子商务个性化服务推荐系统。首先分析了电子商务推荐系统的研究现状;然后,对电子商务个性化服务推荐系统进行需求分析;紧接着设计并实现了一个电子商务个性化服务推荐系统,且重点研究了其中的协同过滤算法;最后,对所设计的算法和系统进行了详细的测试。测试结论显示,系统响应达到相关标准的要求,改进后的算法在稀疏水平上能提供了更好的服务质量。本研究的主要工作如下:(1)针对现有协同过滤算法在稀疏性问题和扩展性方面不良造成推荐不够准确和推荐实时性差等问题,对传统的协同过滤算法进行了改进,提出一种基于概念分层的协同过滤改进算法,通过该算法来实现推荐系统的推荐策略;(2)推荐算法综合分析服务器端的Web日志、用户注册信息、订单信息和Cookies等数据,且对相关原始数据进行数据清理,实现Web数据的挖掘。同时,在服务器端收集用户评分相关数据建立用户隐性个性化兴趣模型,产生用户特征数据库,以挖掘的特征数据来实现个性化过滤;(3)基于改进的算法完成了电子商务个性化推荐系统的设计与实现,分析并设计了个性化推荐系统的整体框架及流程,且对算法进了功能测试与性能测试。测试结果表明,改进后的过滤算法在推荐的准确性、推荐的关联性与推荐的实时性等方面均优于传统算法,特别是在稀疏的用户评价数据集上体现出了良好的推荐性能,有效地提高了电子商务推荐算法的推荐准确性、关联性与实时性。