论文部分内容阅读
生态系统提供人类赖以生存的物质产品和自然环境.近年来,生态复杂性是国际生态学研究的新热点,其基本观点是认识生态系统的动态行为.生态系统是一个典型的复杂系统,内部作用是生态系统复杂化的推动力.在生态学上,分支和混沌现象往往对应于所研究物种的灾难.而且,生态系统复杂性和动态特征引起的突变事件会导致人类生态管理的盲目性,甚至是无效和失败.此外,基于生态学过程的动力学模型的构建一直是生态学的主要研究内容之一.目前,国内渔业资源生物经济模型的研究还处于理论探索阶段,应用研究也较少,与发达国家相比明显滞后.探讨模型在资源开发利用和管理上的应用,可为渔业资源可持续开发和科学管理、开发策略评估等提供参考.由于捕食者-食饵的相互作用是生态系统的重要组成部分,且捕食者-食饵系统中的生物资源最有可能被收获以获得经济利益.本文主要研究基于捕食者-食饵动力学系统.针对两类离散捕食者-食饵模型(一个正常(非奇异)系统,一个奇异系统),利用动力系统理论、数学分析技巧讨论其动态行为,得到了一些初步的动力学理论判据.运用控制理论对客观存在的分支、混沌行为进行有效控制.针对两类结合贴现率的动态生物经济模型,进行稳定性和生物经济平衡点分析,运用最优控制理论模拟不同开发和管理策略,分析模型参数不确定性对结果的影响.主要工作如下:建立了一类具有修正Leslie-Gower项和Holling II型功能性反应的离散捕食者-食饵模型.讨论了不动点的存在性和稳定性.应用规范型理论、分支理论得到了Neimark-Sacker分支的产生条件.应用混沌理论,给出了Marotto意义下混沌的存在条件.针对分支行为,运用混合控制策略,提高了分支阈值,从而延迟分支的出现.针对混沌运动,设计一个状态反馈控制器,将混沌运动镇定到指定的目标位置,实现了混沌运动的控制.上述两个控制策略同样适用于最一般形式的模型—Kolmogorov模型.提出了一类离散奇异捕食者-食饵模型.为了探究它的动力学行为,首先,给出了离散奇异系统局部参数化方法.由于该方法是在抽象的函数形式下推导出来的,从而具有普适性.应用参数化方法导出与该奇异系统拓扑等价的参数化系统(是正常系统).然后,利用规范型理论、分支理论、中心流形定理、混沌理论以及参数化系统与原系统的拓扑等价关系得到了原奇异系统丰富的动力学行为,如不动点的稳定性,Neimark-Sacker分支,flip分支,混沌吸引子等.最后,讨论了对连续模型进行离散化时,积分步长或算法的不同对结果的影响.探讨了一类具有Holling III型功能性反应和一般收获项函数的捕食者-食饵征税模型.首先,分析平衡点的存在性.然后,根据Routh-Hurwitz判据分析正平衡点的局部稳定性;构造适当的Lyapunov函数,得到了正平衡点全局渐近稳定的充分条件.最后,利用Pontryagin极大值原理得到最优征税策略和最优平衡解.由于实际生态系统的复杂性,数学模型中的某些参数并不能被精确量化.为保证建模的可靠性,将区间数引入一类一般的被开发捕食者-食饵模型,建立了不确定参数渔业资源生物经济模型.首先,讨论正平衡点的存在性.其次,基于特征值分析,给出了正平衡点局部渐近稳定的充分条件;构造适当的Dulac函数,得到了正平衡点全局渐近稳定的充分条件.再次,分析了系统可能存在的生物经济平衡点.最后,利用Pontryagin极大值原理,得到了最优捕捞策略和最优平衡解,修正了相关文献的逻辑错误.讨论了参数不确定性对生态系统动力学行为以及最优捕捞策略的影响.