论文部分内容阅读
随着风电齿轮箱向兆瓦级的趋势发展,其维护成本也日益增加,人们对其稳定性提出了更高要求。齿轮传递误差和轴系不对中引起的激励是影响齿轮啮合质量和轴承寿命的主要因素,对风电齿轮箱系统的稳定性有重要影响,因此很有必要研究并优化齿轮传递误差和轴系不对中对齿轮箱系统的动力学响应。本文以2.0MW风电齿轮箱为研究对象,在MASTA软件中建立完整分析模型,研究了传递误差和轴系不对中激励源对风电齿轮箱传动系统的动态响应,通过计算出合适的齿廓修形量和轴系不对中量范围分别对传递误差和轴系不对中的动态响应进行优化,并进行了风电齿轮箱振动测试试验,将测试结果与仿真结果进行对比分析,验证了仿真结果与实际情况较为吻合。主要包括如下内容:(1)结合MASTA和ABAQUS软件,建立了完整的2.0MW风电齿轮箱分析模型,并确定了后续研究齿轮传递误差和轴系不对中的工况。(2)以2.0MW风电齿轮箱中高速级齿轮副为例,应用MASTA软件的齿轮接触分析模块,通过确定合适的齿廓修形量改变啮合刚度,从而获得了较好的传递误差曲线及其响应曲线。(3)在考虑惯性力的情况下,基于集中质量法将转子系统简化为多圆盘系统,通过转子系统的受力平衡和变形协调关系建立运动微分方程,推导了因轴系不对中而激发的激扰力和激扰力矩的计算公式。(4)以2.0MW风电齿轮箱的高速轴与电机轴存在的轴系不对中为例,以上述理论为基础定量计算出轴系不对中引起的激扰力和激扰力矩,进而计算出高速轴上的轴承寿命情况,确定高速轴与电机轴安装时调心所需的轴系不对中量范围,并结合有限元软件仿真出该轴系不对中量范围下引起的动态激扰力对转子系统的振动响应,为如何确定合适的轴系不对中量使齿轮箱平稳运行提供理论基础。(5)对2.0MW风电齿轮箱进行了振动测试试验,通过加速度传感器监测高速级输出端轴承座的振动情况,将试验结果和仿真结果进行对比分析,验证了仿真结果与实际情况较为吻合。