论文部分内容阅读
高速加工是20世纪70年代在欧洲和美国兴起的一种加工技术,它可以根据加工对象的不同,在高材料去除率、极好的加工经济效益下很好地满足产品的质量要求。高速磨削技术在突破难加工材料的技术瓶颈方面具有特别重要的意义。然而,在高速磨削中,由于高的砂轮速度会对工件材料产生极高的冲击效应,对材料发生的动态力学效应分析具有极高难度,且磨削加工中的磨粒具有几何不规则性及其典型的负前角特性,使得磨削加工的机理研究尤其困难。工程陶瓷是一种典型的难加工材料,具有极高的硬度、极好的耐高温、耐磨损、耐腐蚀等特性,在诸如军事、化工、机械、电子等应用领域具有非常广阔的应用前景。然而,加工此类超硬材料将不可避免地产生微观裂纹以及表面和亚表面的损伤,从而影响这类产品在实际应用中的可靠性和使用寿命。本文以碳化硅陶瓷作为典型研究对象,分析其高速磨削机理,探索其表面以及亚表面微观损伤机制,并进一步地控制磨削的损伤,从而获得高质量的低损伤的高性能磨削技术。本文的主要研究成果及创新点包括:(1)发现了高速磨削过程中材料动态断裂韧度具有应变率敏感效应,提出并构建了考虑材料力学特性及磨削工艺参数的延性域磨削临界成屑厚度模型。与传统基于材料去除能理论下只考虑材料物理力学性能的延性域磨削临界成屑厚度模型相比,不但临界成屑厚度大幅增加,而且提高了表面粗糙度,降低了磨削表面裂纹。并通过碳化硅高速磨削实验验证了以上结论。通过碳化硅磨削实验研究表明,当砂轮速度为140m/s时其延性域临界成屑厚度为0.32μm,远远大于以往仅仅考虑材料力学性能的临界成屑厚度时的0.06μm。同时,增大砂轮速度及降低成屑厚度有助于降低碳化硅磨削表面的脆性裂纹,表面塑性去除明显,去除单位材料需要的磨削能大大增加,磨削表面粗糙度提高且裂纹得到显著的控制。因此,在硬脆材料的高速磨削加工中,可以通过提高砂轮速度及降低成屑厚度以增大材料的延性域磨削临界成屑厚度,以延性域磨削的材料去除方式获得了更高的材料去除率的同时提高磨削质量。(2)基于压痕断裂力学的硬脆材料磨削微观损伤模型及动态断裂韧度敏感效应,构建了考虑磨削速度、成屑厚度、加工载荷及材料力学性能的磨削表面以及亚表面微观损伤预测模型。将传统模型压痕损伤模型预测误差20%降低到6%,并从理论与实验上证明了可以通过选择砂轮速度与成屑厚度来控制表面以及亚表面损伤程度的基础上,获得高的加工效率。实验结果分析表明砂轮速度的增加对于表面和亚表面的裂纹产生具有明显的抑制作用,随着砂轮速度的提高其表面的塑性划痕比例增加,脆性破裂比例明显降低,且具有更低的亚表面损伤深度。而随着成屑厚度的增加,其磨削表面的裂纹比例增多,以脆性去除为方式的材料去除占据主导,其亚表面的损伤深度逐渐增大,且以脆性去除为主。因此,为了获得更好的磨削质量,降低表面以及亚表面的损伤程度,可大大提高砂轮速度并降低成屑厚度。而为了获得高的材料去除效率,提高磨削加工效率,可通过适当选择合理成屑厚度并提高砂轮速度来控制磨削表面损伤。(3)深入探讨了硬脆材料的延性与脆性共存的材料去除机制,建立了考虑硬脆材料微观损伤尺度、延性域磨削表面比例及磨削工艺参数的表面粗糙度分析模型。提出了考虑表面粗糙度、亚表面微观损伤层等表面质量的磨削工艺优化设计方法,有效地提高了延性域磨削表面的比例,改善了硬脆材料磨削加工表面质量。实验结果表明,当延性域磨削比例低于50%,脆性去除占据主导,此时脆性去除粗糙度值较大且具有很大的波动性。而当延性去除大于50%且逐渐增大,其脆性去除粗糙度值则呈现明显的下降趋势,此时延性去除占据主导,当延性域磨削比例大于90%时,其脆性粗糙度值急剧下降,此时,碳化硅处于延性域磨削阶段,其粗糙度获得了显著的提升并保持相对稳定。在碳化硅陶瓷等硬脆材料的高效高性能磨削技术研究中,增大砂轮速度有助于获得更高的磨削材料去除率,同时砂轮速度的增加有助于提高磨削表面的延性域磨削表面比例,降低表面以及亚表面裂纹尺度。而成屑厚度的降低也有助于提高磨削表面的延性域磨削比例,并将降低表面以及亚表面裂纹尺度。因此,一定的加工要求下,合理增加成屑厚度,提高砂轮速度有助于实现硬脆材料高效低损伤磨削,实现其脆-延性转变,获得更好的磨削质量。对于本文的碳化硅陶瓷,为了获得N4级Ra0.2μm的磨削表面,其工艺选择可推荐砂轮速度Vs>137m/s,成屑厚度h_m<0.55μm,且可获得高达1.1 mm~3/mms的材料去除率,其延性域去除可稳定在85%以上。同时,为了获得延性域去除为主导(大于50%)的磨削表面,其工艺选择可推荐砂轮速度Vs>53m/s,成屑厚度h_m<0.8μm,且可获得高达1.7mm~3/mms的材料去除率。