论文部分内容阅读
随着汽车用钢发展到第三代,节能性和安全性是汽车用钢发展的新方向。超高强钢是第三代汽车用钢的典型代表,在国外被广泛应用于汽车结构件和加强件。目前国内完整的汽车用超高强板生产线较少,因此丰富汽车用钢品种,促进市场发展,开发具备良好综合力学性能的低成本第三代汽车用超高强钢板一直是近年汽车用钢的研究热点。本文以研究汽车用超高强钢板的微观组织与力学性能为目的,并采用光学显微镜、SEM、EDS、XRD、TEM等对试验材料的组织进行分析,测试试验材料的强度、硬度等综合力学性能。主要试验如下:为了确定汽车用超高强钢板的相变温度及热处理性能,对材料进行CCT曲线测试。研究表明:22MnB5-5V和26MnB5-5V钢的CCT曲线,26MnB5-5V的含碳量更高,其CCT曲线比起22MnB5-5V的CCT曲线明显向右、向下移动,22MnB5-5V的贝氏体的转变上限温度Bs约是580℃,马氏体转变温度Ms约是412℃,而26MnB5-5V的贝氏体的转变上限温度Bs约是530℃,马氏体转变温度Ms约是379℃,二者有较大差异。22MnB5-5V和26MnB5-5V均在冷却速度低于0.5℃/s生成铁素体+珠光体组织,在冷却速度为3~5℃/s范围内生成全贝氏体组织,在冷却速度超过20℃/s生成全马氏体组织。材料在随着冷却速度的增加,强度、硬度呈总体上升的趋势。材料在冷却速度较低的时候生成明显的带状组织,碳含量、冷却速度为影响材料带状组织的重要因素,在实际生产过程中可适当提升冷却速度以消除试验材料带状组织。为了确定汽车用超高强钢板得到具体组织的对应工艺,对材料随炉、开炉、空冷、风冷、油冷和水冷六种不同的热处理方式,研究这六种不同的热处理方式对材料组织和性能的影响。研究表明:试验材料22MnB5-5V和26MnB5-5V钢在随炉冷却条件下生成带状组织,在开炉冷却下生成等轴分布的铁素体和珠光体组织,在空冷条件下生成贝氏体组织,在风冷条件下开始生成马氏体组织,在油冷和水冷条件下生成单一的板条马氏体组织,达到超高强钢的力学性能,满足第三代汽车用钢的标准。回火温度对材料组织及性能影响较大,为了确定材料的最佳的回火温度,对淬火后的22MnB5-5V钢进行150℃、200℃、250℃和300℃四组回火温度对材料组织和性能的影响。研究表明:回火组织主要为回火马氏体。在试验条件内,150℃为最佳回火温度,拉伸强度与硬度最大,为1583 MPa和467 HV;在TEM下观察到材料淬回火后在马氏体板条束中形成高密度的位错,析出明显第二相组织,呈弥散分布,第二相尺寸约为25~50 nm之间,材料具备很高的力学性能,而塑韧性无明显变化。为了探究材料是否有冷冲压成形的可能性,研究冷变形对汽车用超高强钢组织和性能的影响,对汽车用22MnB5-5V钢进行在120 kN、140 kN、160 kN、180 kN和200 kN的变形压力对材料组织及性能的影响,研究表明:材料具有好的冷变形性能,在本试验条件下形变量可达到30%。随着材料变形率的增加,试验材料受到的冲压力越大,试验材料的变形就越大。当形变量为30%时,硬度增幅最强,最大硬度为537.5 HV。随着冲压力和变形量的增加,材料的形变硬化效应会增强,材料的形变在材料的实际使用过程中能提高安全性。