论文部分内容阅读
单光子探测器作为一种超高灵敏度的光电转换器件,被广泛应用于量子信息,生物检测,自由空间光通信,远距离激光测距,激光三维成像和天文观测等众多领域。在诸多类型的单光子探测器中,基于雪崩光电二极管(APD)的单光子探测器凭借其在盖革模式工作时具有的高内部雪崩增益,低噪声,低功耗,小尺寸,驱动简单,无需超低温等诸多优点,是实用化的微弱光信号探测器件之一,并且可进一步形成阵列器件,适用于机载和星载激光雷达系统等移动平台。但是APD实际应用中存在一个不可忽视的问题,其雪崩点电压会随着温度变化,导致雪崩增益发生变化,直接影响到探测效率、暗计数等重要的性能指标,使得测量出现较大误差,严重时甚至可能损毁器件,而目前绝大多数的SiAPD单光子探测器都是基于室温设计,工作温度范围有限,这极大地限制了探测器全天候野外条件下的实际应用。针对这个问题,本文发展了一种适应大温度范围的单光子探测技术,采用温度控制与直流偏压补偿两者相结合的方法,实现雪崩点电压温度漂移的自动补偿,从而扩大Si APD可稳定工作的温度范围,满足不同温度环境的实际应用需求。偏压补偿部分先后尝试了模拟电路偏压补偿方式和基于AVR单片机的数字偏压补偿方式,并对所研制的SiAPD单光子探测器进行性能测试及分析,验证了方案的可行性,最终实现了-40℃~45℃的温度范围内的高稳定性的单光子探测器,表明所研制的偏压自动补偿的Si APD单光子探测器具备了在温度变化较大的外场稳定运行的能力,为机载或星载光子计数激光测量提供了高稳定的单光子探测技术支持。此外,基于盖革模式雪崩光电二极管的特性分析,结合硬件电路和LabVIEW软件编程,设计了一个盖革模式雪崩光电二极管性能测试装置,借助该测试装置,能方便快捷地实现盖革模式雪崩光电二极管的性能测试及初步筛选。