论文部分内容阅读
随着物联网的发展和大数据时代的到来,数据爆炸式增长导致信息过载等问题,使传统的推荐系统逐渐转型为个性化推荐系统。个性化推荐算法通过构建用户画像和预测用户行为来提供信息过滤和推荐服务。在以大数据为背景下的推荐系统中,领域推荐技术的数据构成日趋复杂,呈现出海量异构数据、数据特征缺失、数据特征异常和数据特征关联等新特征。这些特征从问题规模、特征缺失程度、异常特征状态和关联关系等方面对推荐算法提出了新的需求和挑战。为此,本文开展基于特征关联的特征识别、预测与推荐算法研究。主要包含以下几个方面:(1)特征关系的分类关联规则启发式挖掘算法与特征匹配算法。基于海量数据隐藏的关联关系,重点研究面向推荐算法的数据本身隐式的分类关联规则。引入分类及连续的数据特征属性并离散化,扩展数据特征的二元表示,确保数据特征属性的多样性。为了挖掘数据中某些关联特征,研究基于最小支持度的启发式特征挖掘方法,发现关联特征的频繁性及构建最优特征子集。基于数据特征频繁项,研究基于最小置信度的启发式分类关联规则挖掘算法,为不同情景模式下,进行基于分类关联规则的特征匹配。利用机器学习库中健康医疗情景实验数据进行实验验证与分析,验证了提出算法的有效性。(2)隐式反馈特征识别与预测算法。针对应用领域数据特征稀疏性和缺失性问题,系统地研究领域中数据缺失特征的识别与预测分类问题。在系统地分析领域数据特征缺失基础上,研究基于加权用户的协同过滤特征识别方法。通过有监督学习向无监督学习的转变,研究推荐系统特征属性间隐式关联关系的特征识别方法。研究基于隐式特征提取的隐式反馈协同过滤特征识别与预测算法,通过随机创建的数据特征缺失程度模拟真实环境数据特征缺失情况,实验验证算法的有效性。利用机器学习库中健康医疗情景实验数据进行实验验证与分析,验证了提出算法的有效性和预测准确率。(3)数据异常特征识别与预测算法。针对只关注于离散数据特征的局限性,研究基于连续属性时间序列数据相互依赖关联的特征识别算法,以此进行异常特征识别与预测。研究基于深度学习网络模型的连续时间序列数据的特征识别方法,通过复杂的图模式进行数据降维,以及时频序列数据分析,形成深层次的数据时序关联关系与异常特征识别模型,以此改善预测结果的有效性。利用脑电图健康医疗情景实验数据进行实验验证与分析,验证了提出算法的有效性和预测准确率。(4)面向领域的级联加权混合个性化推荐方法。针对特定领域推荐需求,研究不同情境模式下的混合推荐方法,面向领域的研究问题抽象成为本体推荐项目的个性化推荐过程。构建用户特征信息模型画像,采用分类树和内容相似度的相似用户发现算法发现相似用户,并基于关联规则的特征匹配算法加权计算得到推荐方案。针对推荐算法冷启动问题,研究基于领域知识分类树的相似用户发现算法,采用离线计算方法提高效率。基于多用户的层次分析决策推荐形式化方法进行决策推荐,改善用户的满意度和推荐效果。中风患者实际健康医疗实验数据进行实验验证与算法比较,验证了本文混合推荐算法的有效性。