基于欧拉弹性极小化的MR重建和软组织形变仿真的研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:gpi678c
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
曲率是曲线和曲面重要的几何量,是图像、视觉分析以及计算机图形学的基本几何元素。而欧拉弹性是较早被应用到图像处理领域和计算机视觉中的基于曲率的方法。考虑到曲率在连接缺失的边缘和结构方面出色的能力,我们通过欧拉弹性提出了新的稀疏重建模型。特别地,我们首先将欧拉弹性正则化模型拓展为非局部形式,充分利用图像的模式冗余和结构相似性。由于欧拉弹性项非凸、非平滑、非线性,我们将局部和非局部弹性正则项视为加权总变差函数,以便在计算效率和重建质量之间取得良好的平衡。交替方向迭代乘子法作为有效的算法被用来求解提出的模型,并在特定的假设条件下讨论了该算法的收敛性。根据局部欧拉弹性正则化的重建结果估计非局部弹性正则化中的权重函数。数值实验表明,我们的非局部弹性模型在不同的采样模式和采样率下均有较高的重建质量,尤其是在采样率极低的情况下。利用欧拉弹性,我们提出了新的质点弹簧模型用于模拟非线性不可压缩的软组织形变过程。我们在质点的1-环邻域内估计曲率,进而利用欧拉弹性能量刻画弹簧的形变,从而得到有非线性应力-应变关系的质点弹簧模型。之后,利用Verlet积分设计显式迭代格式求解模型。和传统的质点弹簧模型以及保持体积的质点弹簧模型相比,我们的模型不仅可以有效的刻画软组织的非线性力学特性、保体积性而且具有更好的计算效率。因此,改进的质点弹簧模型更适用于实时的软组织仿真问题。
其他文献
城市交通系统作为城市系统的重要组成部分,在城市风险研究中不可或缺。城市风险的防范与监测需要将城市交通出行特征纳入考量范围。对于交通出行轨迹数据进行挖掘,可以发现城市居民的移动规律与城市系统空间的交互特征,进而刻画出整个城市的交通出行画像。本文以描绘城市交通出行画像为出发点,研究如何高效地挖掘出行轨迹数据,探索这些行驶轨迹形成的原因,开展了以下工作:首先,提出了基于频繁模式挖掘的城市交通出行画像方法
古代壁画是是中国古典艺术的宝库,是中国历史和文化的见证,是我国宝贵的历史文化遗产,其历史研究价值更是无法估量。然而在外界环境及人为内在因素的影响下,大部分壁画如敦煌莫高窟、西千佛洞等壁画群均出现不同程度的裂缝、脱落、酥碱、霉变等多种形式的病害。为了长久地保护这些珍宝,修复壁画中的破损部分精准还原壁画内容,是一项亟需研究且具有重大意义的内容。与传统手工技术相比,数字化技术的出现给古建筑壁画修复带来了
深度估计一直是机器视觉领域中重要的研究课题。早期的深度估计是基于场景中的几何约束信息从而得到深度信息。后来出现了单目深度估计算法。近年来随着人工智能技术的高速发展,深度学习方向炙手可热,基于深度学习的深度估计算法发展迅猛使得深度估计有了更广泛的应用,比如:实地测距,机器人导航,自动驾驶等等。但现在大部分深度估计算法主要用于室外场景,而室内场景下的深度估计,由于该类场景没有显著的全局或局部特征,场景
为了解决传统互联网暴露出的IP地址不足、安全性差等问题,一种以内容为中心的新型网络架构命名数据网应运而生。命名数据网通过内置内容存储池,提供了网内缓存功能,实现了数据的高效分发与共享。然而,频繁的数据检索和海量的数据存储给内容存储池的设计与部署带来了巨大挑战。为此,本论文针对命名数据网转发平面内容存储池的存储结构及其数据检索算法展开研究,设计了高性能、可部署的内容存储池。本论文的主要工作和创新点总
信息时代,大数据中含有许多有用的知识,值得人们深入探索、挖掘、研究、分析.随着信息爆炸,数据量暴增,知识图谱在垂直搜索、NLP、社会网络、语义WEB、智能问答、生物信息学医学等领域有着越来越重要且广泛的应用.知识图谱推理算法是根据知识图谱中现存的知识,通过计算推理,得到新的知识的过程,是当前知识图谱的热门课题.对于大量的知识图谱推理问题,现有的张量分解知识图谱算法仅考虑数据的单一特征,对知识图谱的
视频显著性对象检测,旨在找出视频每一帧中吸引人视觉注意的对象。由于其广泛的应用场景,近几年吸引了越来越多的研究兴趣。然而,在当前的视频显著性领域,对“视频显著性对象”的定义一直存在一些争议。在大多数先前的工作中,都使用的是视频对象分割或运动追踪数据集作为标准,直接将单一的前景对象或运动中的对象看作是显著对象,这并不符合我们人眼视觉机制的判断规则。即便后来出现了专门针对于显著性领域的数据集,但它的标
工业物联网通过各类传感器采集工业大数据,并运用大数据智能分析技术优化生产流程。然而,由于具备高潜在价值、强安全需求属性,工业大数据一直存在孤岛问题,难以实现跨领域安全共享。作为新兴技术之一,区块链具备可溯源,防篡改等特性,为工业大数据的安全高效共享提供了良好的前景。但现有对于区块链数据共享的研究,只关注数据共享各方之间数据交换过程的安全性,很少考虑数据共享的效率。因此,如何在使用区块链技术保证数据
近年来,自动驾驶技术的蓬勃发展极大地促进了汽车科技的智能化变革,但高昂的传感器硬件成本严重阻碍了自动驾驶汽车的落地应用。因此如何使用低成本传感器在特定的场景下实现自动驾驶成为了学术界与产业界非常关注的问题。自动驾驶汽车落地应用的基础是精确的感知与定位,因此基于视觉的感知与定位研究对加速自动驾驶汽车低成本落地应用具有重要意义。本文聚焦结构化道路环境,提出一种基于视觉的低成本方案来实现自动驾驶汽车的横
与传统的信息检索系统相比,问答系统提供了一种更为自然的人机交互方式,使得用户能够通过自然语言的方式与机器交流来获取信息。但在很多的实际应用中,机器需要主动地向用户提问,通过理解用户给出的答案来确定用户的真实意图,这个过程被称作反向问答。然而,当前几乎所有的解决方案都通过强制用户点击选项来避免自动的答案理解,这极大地破坏了用户的体验。针对答案理解任务,文章设计了相应的深度学习模型,旨在为用户提供一种
二维人脸识别面对光照、妆容、姿态和遮挡等因素的变化表现较差,在实际应用中对采集的图像要求较高,需要采集到正面清晰图像。而三维人脸数据因为包含二维人脸图像无法提供的深度信息,从而可以有效地应对光线变化与妆容变化等带来的干扰。传统三维人脸识别方法过程复杂,而基于深度学习的三维人脸识别方法,由于缺少足够规模的数据集,目前还无法达到二维人脸识别的研究水平。基于我们的调研,目前相关研究成果中,多是基于已有三