论文部分内容阅读
本文研究如下几类非线性矩阵问题和特殊结构矩阵问题.1.无阻尼陀螺系统给出无阻尼陀螺系统G(λ)=Mλ~2+Cλ+K的谱分解定理,其中M为质量矩阵,K为刚性矩阵,C为陀螺矩阵,并利用该定理解决了特征值反问题和无干扰特征值嵌入问题.谱分解定理表明矩阵M,C,K的含反对称参数矩阵S的谱分解式与实标准对(X,T)是一一对应的.若由系统的谱信息构造的矩阵T是分块对角矩阵,则S具有类上三角Hankel块结构.特别地,当系统只有半单的特征值时,存在一个标准对使得S只有2n个非零元素,并且非零元素为1或-1.另外,谱分解定理还给出无阻尼陀螺系统的二次特征值反问题有解的充要条件和通解表达式.当无阻尼陀螺系统只有单特征值时,无干扰特征值嵌入问题一定有解,并且可以推导出只包含已知的特征信息的通解表达式.2.非线性矩阵方程的可解性和代数扰动分析系统地研究矩阵方程X~s±A~*X~tA=Q(s>0,t>0)的可解性、迭代算法和代数扰动分析.首先利用矩阵分解方法推导X~s+A~*X~tA=Q存在Hermtian正定解的充要条件和通解表达式(如果解存在).然后利用Brouwer不动点原理和特征值方法寻找Hermtian正定解的存在区间和存在唯一解的充分条件.将X~s-A~*X~tA=Q分为三种情况进行讨论:当s<t时给出类最大解和类最小解的定义及存在的充分条件,并且推导出最大解存在的充分条件和能够收敛到最大解的迭代公式;当s>t时设计求唯一解的一个新的迭代算法;当s=t时给出唯一解的精确表达式.另外建立代数扰动理论,分别给出唯一解、类最大解和类最小解的扰动上界.3.实多项式矩阵方程的敏感性分析考虑实系数多项式矩阵方程X~s±A′X~tA=Q的对称正定解的敏感性.首先给出扰动方程有唯一的对称正定解的充分条件,然后给出能反应对称正定解的敏感性的测度—条件数的定义及其精确表达式.数值实验表明该条件数能够反映对称正定解的敏感性.4.子矩阵约束对称广义特征值反问题和最佳逼近问题给出对称的广义特征值模型的部分修正问题和最佳逼近问题的数学描述,并给出问题有解的充要条件及通解表达式.5.广义对称矩阵给出k次(R,S)-对称矩阵和(R,ω_η)-对称矩阵的定义,并刻画其特殊结构.解决了相应的特征问题、奇异值分解、最小二乘问题、特征值反问题、极小范数问题和最佳逼近问题.