论文部分内容阅读
粘细菌是一类特殊的细菌类群,具有复杂的细胞间协同行为和庞大的基因组。粘细菌基因组的典型特点是存在大量的基因复制和水平基因转移现象,比如Sorangium cellulosum So0157-2(14.78Mb)的基因组中近40%的基因可能来自水平转移,暗示了粘细菌基因组易于整合外源DNA并进行染色体自我重组。整合外源DNA需要移动工具,比如质粒、噬菌体,但是,与其明显的基因组扩张相反的是,在粘细菌中并未发现普遍的质粒存在现象。pMF1,来自于Myxococcusfulvus124B02,是目前发现的唯一能在粘细菌细胞中自主复制的内源质粒。pMF1对于研究为何M.fulvus124B02能够包含内源质粒、质粒给M.fulvus124B02宿主带来的影响以及粘细菌基因组的进化具有重要意义。 论文围绕粘细菌内源质粒pMF1的存在机制展开,主要研究内容与研究结果如下: 1、pMF1复制和分配遗传稳定区域功能模式分析。 采用PEG6000沉淀法提取了M.xanthus DZ1 pZJY41的复制中间体,确定了pMF1的复制方式为theta型,这种方式是大部分革兰氏阴性细菌中质粒的复制方式。但是,与经典的repABC质粒的复制和分配方式不同,pMF1的复制和分配功能是由两个单独的操纵子负责(pMF1.13-pMF1.16,pMF1.21-pMF1.23),基因结构、调控网络更复杂,对维持低拷贝质粒稳定存在的主动分配系统进行了更为深入的研究。pMF1质粒的par loci除了包含其他低拷贝质粒都含有的编码ATPase(pMF1.22,parA)、DNA-binding protein(pMF1.23,parB)的基因以及parS位点以外,还包含一个额外的基因(pMF1.21),命名为parC。这与其他低拷贝质粒的主动分配系统有明显不同,暗示了pMF1质粒在完成复制进行分配时采用了一种新颖的方式。在论文的第二部分,对该基因进行了研究。 parC位于promoter和parA之间,并且与parA在序列上有4个碱基的重叠。这种序列上的组合方式暗示了parC可能具有某种功能。将parC进行全基因敲除后,重组质粒的稳定性下降到与pZJY41相似,对粘球菌宿主M.xanthus DZ1最大生长量的影响也显著下降,表明parC参与了par loci精确分配质粒和影响宿主生长的过程。融合荧光报告基因结果显示parC在粘球菌宿主中能正常表达成蛋白,是以蛋白质的形式发挥作用。通过与数据库进行比对并没有找到ParC在序列和结构上的同源蛋白。对其二级结构进行预测发现ParC含有大量的α螺旋,大约80%的氨基酸都形成了α螺旋。同源模建结果发现ParC形成一个发卡样的长螺旋,该长螺旋逆时针旋转成一个类似DNA超螺旋结构的右手螺旋。表面电势分析显示在长螺旋的顶端(N-端)广泛分布着一些带正电荷的氨基酸,而底部(C-端)则富含带负电荷的氨基酸。结合ParC形成三聚体的实验结果,可以总结出ParC螺旋利用半胱氨酸形成二硫键,组装成3个螺旋贴在一起的N-端带正电,C-端带负电的“棒状”结构。 pMF1的DNA-binding protein ParB是一个碱性蛋白,带正电荷,而细胞内的DNA是带负电荷的,ParC这种电荷的不均匀分布是否是为了与这两者相互作用呢?实验表明ParC确实能增强ParB与IrA(parS位点)的结合作用,但其本身与 ItA并不结合。而且ParC与ori(10953-13980)及par loci(17242-50)区均没有结合作用。体内和体外实验表明ParC与ParB之间也没有相互作用。在低拷贝质粒的分配过程中,第一步便是大量的ParB蛋白与parS结合,形成分配复合物,而的结果表明ParC不参与质粒分配的第一步。 pMF1质粒的复制和分配方式不同于其他低拷贝质粒,对其机制在做进一步研究。对于隐秘质粒来说,仅有完整的复制和分配功能不能保证其在宿主漫长进化过程中的稳定存在。接下来将研究目标扩展到整个质粒和宿主,从基因组学的角度研究质粒-宿主的进化历史。 2、pMF1质粒和宿主M.fulvus124B02基因组组学研究暗示了两者的共进化。对pMF1质粒上的23个基因所编码的蛋白分别进行功能来源预测,并归为四类。其中14个蛋白与粘细菌密切相关,质粒上约1/3(8个)的编码蛋白只能与M.stipitatus DSM14675比对到同源蛋白,另外,1个来自于Stigmatellaaurantiaca,1个来自于Anaeromyxobacter,1个来自于Chondromyces crocatus和Sorangium cellulosum,3个来自于粘细菌众多种属。9个pMF1蛋白在数据库中比对不到任何的同源蛋白,属于pMF1特有。但是,很多蛋白的功能仍然未知。转录组数据表明在23个基因中,转录水平最高的是pMF1.17,pMF1.18,其次是pMF1.12。链特异性转录组和RT-PCR结果表明pMF1包含6个操纵子,占全部基因比例的87%(20/23)。 接下来对宿主M.fulvus124B02进行了基因组全测序,结果表明M.fulvus124B02包含一个环形染色体,大小为11,048,835 bp,以及一个环形质粒,也就是pMF1。染色体和质粒基因组的GC含量相似,分别为69.96%和68.7%。全基因组进化树和共线性比对表明M.fulvus124B02与M.stipitatus DSM14675同源性最高,二者在基因组大小上也最接近。与其他粘球菌相比,M.fulvus124B02的基因组有1-2 Mb的扩张,但其在直系同源和旁系同源基因比例上并没有明显差异。限制修饰系统和CRISPR-Cas系统比较分析发现,M.fulvus124B02的防御系统更加薄弱,其Cas蛋白操纵子比其他粘球菌要少1/2-2/3,记录外源DNA的spacers也少于其他同种或同属的粘细菌,限制修饰系统类型和修饰酶种类也较少。 同源比对结果显示pMF1上的某些基因来自于其他粘细菌,暗示了pMF1曾经在不同粘细菌之间水平转移,而且与M.stipitatus DSM14675的同源基因最多。粘球菌属产生于47-51百万年前,而M.fulvus124B02与M.stipitatus DSM14675在大约41百万年前时由共同祖先分化而来,相对薄弱的免疫系统解释了为什么pMF1最终在M.fulvus124B02中保存下来,并与M.fulvus124B02共同进化,稳定存在。 3、pMF1在宿主M.fulvus124B02中发挥维持宿主基因组稳定的作用 为了探明pMF1稳定存在于M.fulvus124B02中的机制,构建了质粒消除菌株,在实验室条件下模拟pMF1与宿主M.fulvus124B02的进化。 利用质粒不相容原理可以将pMF1自M.fulvus124B02中消除,而且pMF1的消除没有显著影响宿主的生长、运动、发育等表型,说明pMF1对宿主的影响并不是短时间的表型影响。在进行实验室传代时,设定了三种培养条件,分别以丰富的CYE、贫瘠的dead cells和捕食性的living cells为食物来源。结果发现只有在以贫瘠的dead cells为营养时,pMF1能稳定存在,而在其他两种条件下传代的菌株中,pMF1在7-8周时便检测不到。为了找到影响pMF1稳定存在的相关基因,对三种条件传代的菌株进行测序,对筛选出的基因进行敲除,重复传代实验,最终确定了可能相关的一些基因。 筛选到了pMF1稳定存在的实验室条件,在该条件下,对经过较长时间共进化的菌株进行表型分析时发现不携带质粒的菌株其发育能力下降程度要明显高于携带质粒的菌株,CYE平板上的124B02/free菌株甚至由聚团生长变成分散生长,暗示了pMF1对宿主的影响可能是经过长时间的逐渐积累。为了验证这一猜想,对进化菌株进行基因组测序,结果表明124B02/free菌株的基因组突变率要明显高于124B02/4111和124B02/pMF1菌株,pMF1或者pZJY4111质粒的存在能降低基因组突变率,而且这些突变的发生是随机的,没有基因组位置和基因功能的偏好性。pMF1和pZJY4111的共同部分是质粒的ori和par loci,而pZJY4111质粒在进化传代过程中ori被宿主剪切,只剩下par loci的现象表明可能是par loci发挥了稳定基因组,防止基因组发生突变的作用。 综上所述,pMF1的发现,不仅成功解决了粘细菌的遗传操作问题,同时为了解粘细菌基因组进化提供了指导。据此,推测了pMF1隐秘质粒稳定存在的机制模型。在粘细菌的进化历史过程中,做为基因移动的载体,pMF1曾经在粘细菌之间水平转移。由于结构简单、拷贝数高,质粒被认为是快速的基因进化器,可以加速宿主基因组的进化。由于具有相对较弱的免疫防御系统,pMF1更容易进入M.fulvus124B02宿主细胞内。pMF1通过参与宿主基因组的错配修复过程,最终被M.fulvus124B02需要而保存下来。