【摘 要】
:
步进应力加速寿命试验和序进应力加速寿命试验是有效和经济的寿命试验方法,随着理论的日趋成熟,在实践中开始得到应用和推广.很多学者就这两种试验的理论和方法进行了许多探
论文部分内容阅读
步进应力加速寿命试验和序进应力加速寿命试验是有效和经济的寿命试验方法,随着理论的日趋成熟,在实践中开始得到应用和推广.很多学者就这两种试验的理论和方法进行了许多探讨.该文基于Weibull分布步加试验和序加试验下获得的失效数据,对分布函数中的形状参数和刻度参数进行了估计,从而得到了工作应力下产品的平均寿命.在序加试验下,对于逆幂律模型,给出了参数的Bayes统计分析,并利用Laplace方法解决了分布的形状参数取为连续先验时各参数的Bayes估计和参数后验边际密度.在步加试验下,对于TFR模型,给出了参数满足逆幂律和不满足逆幂律两种情况时的Bayes统计分析,并利用Laplace方法得到了参数的Bayes估计.实例表明通过Laplace方法得到的估计与利用Gibbs抽样方法得到的参数的Bayes估计很接近.
其他文献
该文研究了一般外势下分式Fokker-Planck方程及其解的性质,证明了分式Fokker-Planck方程的渐近解是服从伸展的Gauss分布的,并且在一般外势下它的解可以表示成无量纲相似变量
席卷全球的“金融风暴”,用活生生的事实,对现存的许多金融理论提出了质疑。全球最具影响力的金融专家之一,曾经促成了格林斯潘发表那篇成为全球股市泡沫破灭的导火索的、关于“
Brown运动的极限定理(Limit Theorem of Brownian Motion)是概率论极限理论的一个重要分支,对Brown运动以及与Brown运动相关随机过程轨道的性质的研究是一个广泛研究的课题。
本文主要研究几类微分系统的极限环、孤立周期波解和局部临界周期分支问题,全由六章组成。 第一章,论述平面多项式系统的极限环和局部临界周期分支问题的历史背景及其研究
由于控制数理论的研究越来越引起人们的重视,人们对控制数有了更深入的了解,提出了不同的控制数,例如全控制数、小控制数、负控制数、连通控制数等.这些类型的控制数的量的关
该文给出了左超对称代数等概念,进一步讨论了etale超仿射表示的相关性质.讨论了李超代数上的左超对称结构与其上的1维上同调群的关系.对于一类具体的Cartan型模李超代数W:=W(
该文在具有Moore-Penrose逆的Abel范畴中,给出了态射方程axα=β的非负定解存在的充要条件为方程ay=β有解,以及非负定解存在时通解的表达式x=αβ(α)+(1-αα)θτθ(1-α
该文共分为三个部分:第一部分介绍了系统(I)的背景和相关问题研究的历史进展.在回顾前人工作的基础上,叙述了该文的主要结果,即在初值满足一定光滑性的条件下,系统(I)是局部
随着非线性理论的发展,人们发现物理学、化学、信息科学、生命科学、空间科学、地理科学和环境科学等领域中的模型都可以转化为非线性偏微分方程.其中对非线性偏微分方程的求
遗传算法是借鉴生物的自然选择和遗传化机制而开发出的一种全局优化自适应概率搜索算法,它更表现出比其他传统优化方法更加独特和优越的性能,隐含并行性和全局搜索特点是遗传