阳离子通道蛋白TRPV是AMPK响应葡萄糖代谢途径的必要因子

来源 :厦门大学 | 被引量 : 0次 | 上传用户:one9871023
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
AMPK是体内调节参与代谢调节的重要因子,之前的研究已表明在葡萄糖饥饿条件下,AMPK可以通过溶酶体途径被激活,从而激活或者抑制下游多条代谢途径,以达到增强分解代谢从而使机体适应低葡萄糖水平。在葡萄糖饥饿条件下,AMP/ATP水平不会发生改变,而在葡萄糖分解途径中的中间代谢产物果糖-1.6-二磷酸(FBP)含量显著降低,从而引起FBP醛缩酶(aldolase)的变构,使其参与调节AXIN-AMPK-LKB1复合体的组装,进而促进了上游激酶LKB1对AMPK的激活。然而,aldolase是如何调节下游这一系列变化,最终导致AMPK激活的具体机制仍不清楚。在本文中,我们通过质谱分析,发现aldolase可以结合并且抑制TRPV,导致TRPV周围的局部钙离子浓度大大降低,并且运用了免疫荧光共聚焦,超高分辨率(SIM),随机光学重建显微镜(STORM)这三种成像技术证明了 TRPV是在内质网和溶酶体的接触处(contact site)有表达的。此时,TRPV和v-ATPase的相互作用增强,而v-ATPase与aldolase的相互作用减弱,从而使得v-ATPase的活力下降,AMPK被激活。与此一致的是,TRPV拮抗剂的加入可以效仿葡萄糖饥饿激活AMPK,而TRPV激动剂的加入会回复在葡萄糖饥饿时被抑制v-ATPase的活力。在体外,通过检测v-ATPase的酸化和水解ATP的能力,也验证了 TRPV和钙离子的存在可以提高v-ATPase的活力。并且TRPV不仅在功能上对于AMPK激活是必需的,而且在物理上也是必需的,通过CRISPR技术直接敲除TRPV,可以抑制葡萄糖饥饿时AMPK的激活。因此,我们发现了 TRPV联结了 aldolase响应葡萄糖降低引起的FBP水平下降和v-ATPase活力的丧失,继而使得AXIN复合体形成,最终导致AMPK的激活。
其他文献
脑胶质瘤作为中枢神经系统最常见的恶性肿瘤,发病机制复杂,手术切除难度极大,术后易复发,目前还没有有效的治疗手段。胶质瘤的发病机制目前尚不清楚,目前的研究认为上皮间质转化可能在胶质瘤的发生过程中起到重要作用,近年来非编码RNA和小RNA在肿瘤调控中的作用日益受到重视,被认为对于肿瘤的调控起到重要作用,特定分子在肿瘤的EMT中发挥核心调控作用。本论文旨在阐明LncRNA MIAT是如何在胶质瘤的发生过
视黄醇X受体α(retinoid X receptor,RXRα),是核受体超家族中重要的一员,参与调控人体生长、分化、代谢和调亡等生理功能。RXRα的异常表达和功能与癌症和疾病的发展密切相关。这使得RXRα成为药物开发的一个重要靶点。本课题组之前报道了 N端截短RXRα即tRXRα广泛存在于许多肿瘤细胞和炎症细胞中。在TNFα存在下,tRXRα与PI3K调节亚基p85α相互作用,激活AKT,促进
大黄鱼(Larirnichthys crocea)是我国养殖产量最高的海水鱼类,其金黄的体色是决定其市场价值的重要特征之一。大黄鱼体色白天呈现银白色,而夜晚呈现金黄色。本研究初步阐明了大黄鱼体色变化的机制:活体大黄鱼白天呈银白色是由于黄色素细胞色素颗粒聚集,而夜晚呈金黄色是由于黄色素细胞色素颗粒扩散,活体大黄鱼的载黑素细胞无论白天或夜晚其色素颗粒都是扩散的。大黄鱼体色的变化与光照相关,全光谱光照(
鱼类是目前数量最多且多样性最为丰富的脊椎动物类群。为了适应复杂的水生环境并产生更多的后代,鱼类的繁殖策略也十分多样且复杂,几乎囊括了脊椎动物中所有已知的性别决定和性别分化方式。该特性使鱼类成为了研究性别决定和性别调控机制的良好材料。与高等脊椎动物均为雌雄异体不同,在鱼类中除了雌雄异体外还广泛存在着天然形成的、具有繁殖能力的雌雄同体种类。但是目前关于鱼类性别调控的研究仍主要集中在几种雌雄异体的模式鱼
介绍了无人艇及无人艇作战的一般概念。分析了无人艇及其集群作战在人员伤亡、作战效果、军事经济效益等方面的独特优势。对美国、以色列等西方国家主要装备型号的战技术性能特点进行了分析和总结。从航路规划与自动驾驶、数据融合、智能打击等几个主要技术领域,阐述了智能化升级改造的方向,并从未来海战制海权争夺的角度,对无人艇技术的发展进行了展望。
固有免疫和适应性免疫系统是机体抵抗外部病原入侵的关键,但是固有免疫持续时间相对较短,且无特异性,而适应性免疫具有显著的特异性和相对更长的免疫持续时间。由于固有免疫和适应性免疫的上述特征,对机体进行疫苗接种可以达到预防相关病原体的作用。但是对于具有高度突变性的病原体,只要其关键表位出现了改变,就会导致适应性免疫产生的抗体失去中和能力,造成“脱靶”,从而使得这些高突变病毒的疫苗接种变得效率相对低下。这
扬子三角洲区域是我国经济发展最快,人口最为密集的地区之一。为了应对大规模围填海的需求以及海岸侵蚀、海平面上升、风暴等威胁,该区域修建大量硬基质海堤,这些硬基质海堤改变了原本的底质条件和景观结构,为岩相潮间带生物提供了可以附着和栖息的环境。在全球变暖等多重因子的推动下,硬基质海堤可能会成为岩相潮间带生物分布区向北扩张的“跳板”,进而改变原有的岩相潮间带生物地理格局。为了阐明气候变化和人类活动等环境变
Shp2(人基因名ptpn11)是一种非受体型蛋白酪氨酸磷酸酶,广泛表达于全身各个组织器官,在多种生长因子介导的细胞质信号通路中作为重要的调控蛋白从而参与细胞增殖、分化、细胞免疫应答以及细胞代谢等生理过程。临床研究证明人类生殖细胞的PTPN11基因突变会导致努南综合征(Noonan syndrom)和豹综合征(LEOPARD syndrom)等相关疾病,患有这些疾病的男性患者大多表现为性腺发育迟缓
浅海余流是研究海域内的水体交换、热量交换和盐度、营养盐、和污染物等其它重要物质迁移和输运的关键变量。浅海余流受水深、岸线、海底摩擦、风场、河流、潮汐、海水密度以及外海环流等诸多要素影响。其中风场、河流、潮汐、海水密度和外海环流是主要驱动要素,评估这些驱动要素对浅海余流分布的影响是浅海余流动力机制研究的重要内容之一。余流惯性和底摩擦是余流动力机制涉及的两个主要非线性过程,也是余流研究的难点。余流研究
本文从基础的细胞形态观察研究入手,利用显微镜及电镜技术研究了雨生红球藻细胞的生命周期、细胞间的转变过程以及细胞的繁殖方式。对4种不同类型的雨生红球藻细胞的差异表达基因进行了分析,通过GO(GeneOntology)富集分析及 KEGG(Kyoto Encyclopedia of Genes and Genomes)富集分析确定 了与其包囊化相关的基因表达模式。在这些研究基础上,通过环境因子调控细胞