空间众包中群组任务分配算法的研究

来源 :苏州大学 | 被引量 : 0次 | 上传用户:xsfantasy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着智能设备的普及和无线通信技术的发展,空间众包(Spatial Crowdsourcing,简称SC)引起了越来越多的关注。在现实场景中,对于复杂的任务,单个工人无法单独高质量地完成任务,此时,空间众包平台更倾向于将每个任务分配给多个工人,这种分配方式称为群组任务分配(Group Task Assignment,简称GTA)。任务分配是空间众包中一个重要的研究方向,对于空间众包中复杂的任务,需要多个工人组成一个工人群组以共同完成任务,因此如何提高工人群组的任务完成质量是一个重要的挑战。基于此挑战,本文进行了如下研究:(1)提出基于社交影响偏好的群组任务分配框架,该框架包括两个阶段。第一阶段是基于社交影响的偏好模型,采用二分图表示模型和注意力机制来学习不同工人群组对不同任务类别的社交影响偏好;第二阶段是基于偏好的群组任务分配,根据这些偏好情况,采用最优任务分配算法,最大化整体任务分配数量。(2)提出数据驱动下基于偏好的群组任务分配框架,该框架包括基于数据驱动的偏好模型和基于偏好的群组任务分配。第一部分采用最大化互信息的方法以及提出组适应性的偏好权重方法来学习工人群组对任务类别的偏好值;第二部分采用基于树分解技术的最优任务分配算法,优先将任务分配给对其兴趣程度更高的工人群组,达到最大化任务分配的目标。(3)在基于社交影响偏好的群组任务分配框架的基础上,提出基于共识偏好的群组任务分配框架。在工人偏好学习过程中,使用堆叠降噪自编码器模型优化对社交网络底层结构的学习,从而提高偏好学习的准确度;在群组任务分配过程中,引入群组共识这一因素,减轻工人群组之间的分歧程度。在保证最大化任务分配数量的情况下,优先将任务分配给共识分数更高的工人群组。
其他文献
群智感知具有时空覆盖广、成本低、应用场景普适等突出优势,可以高效地实现众多极具吸引力的新型感知应用。然而,这些通过利用群体智慧来解决复杂问题的群智感知应用受到参与用户的异质性、随机性等因素的影响,导致群智感知系统收集的感知数据质量难以保证。因此,如何选择合适的用户完成感知任务以保证任务的感知质量是群智感知应用中亟待解决的重要问题,通过设计合理的激励机制鼓励更多潜在用户参与群智感知任务被认为是保证平
学位
随着电商平台的兴起,网络上产生了大量产品相关的评价信息,对市场调研以及潜在客户购买意向决策具有重要意义。面对海量的评价信息,如何快速挖掘产品性能关键评价,从而生成与产品性能息息相关的问答数据具有极大的研究价值。因此,本文针对大量产品评价数据,通过问题生成模型,挖掘用户最关心的产品性能相关问题。传统的问题生成主要针对问答任务相关数据,采用端到端的深度学习架构模型。而基于产品评论的问题生成,不仅需要考
学位
事件抽取旨在挖掘自由文本中的事件信息,并以结构化的形式呈现。它主要包含四个子任务:触发词识别、事件类型分类、论元识别与事件角色分类,ACE为其提供权威数据集ACE2005,并将前两个子任务统称为“事件检测”。基于数据集ACE2005,本课题主要围绕句子级英文事件检测展开研究。目前,事件检测F1值均能达到70%以上,然而,仍存在些许问题。下面将阐述相关问题及解决方案。问题一:语句中多个事件间联系较弱
学位
命名实体识别旨在从无结构文本中识别出属于预定义语义类型的片段,是信息抽取和自然语言处理的关键问题之一。过去二十年里,命名实体识别技术取得了很多成功进展,但绝大多数的方法需要依赖大量同领域的标注语料。这使得将训练好的模型应用到其它领域时,必须在人工标注的目标领域样例上重新训练模型,否则性能下降剧烈。本文从以下两方面入手,提高目标领域的实体识别性能。一方面,试图从源领域的标注数据中挖掘任务相关、领域无
学位
强化学习问题通常可以构建为马尔科夫决策进程,是一种序贯决策问题。强化学习中,智能体通过与环境不断交互,并从中获取奖赏来进行自主学习。近几年,强化学习与深度学习、元学习等结合形成的新算法在人工智能领域十分流行。然而,强化学习中一直以来都存在一个重大的挑战,探索与利用的平衡,这二者之间的平衡对于算法的性能有很大的影响。针对这一问题,本文提出了多种权衡探索与利用的强化学习算法,并分别在深度强化学习和元强
学位
<正>从某种意义上说,习近平新时代中国特色社会主义思想之所以具有强大的真理力量、道义力量、实践力量、文明力量,就在于其在马克思主义世界观和方法论上深刻塑造并充分实践了“六个必须坚持”的理论精粹和实践智慧
期刊
习近平新时代中国特色社会主义思想的世界观和方法论是中国化时代化的马克思主义世界观和方法论,为全党和全国各族人民提供了科学的世界观方法论、奋进新征程的根本遵循与凝心聚力的思想武器。“六个必须坚持”从哲学层面凝练概括了习近平新时代中国特色社会主义思想的精髓要义,构成了相互联系、内在统一的世界观和方法论,系统阐明了中国共产党人应当坚持什么样的立场观点与方法推进中国式现代化宏图大业,将我们对马克思主义活的
期刊
在强化学习中,一个经典问题是如何解决价值函数对目标进行评估时产生的估计偏差。基于截断式Q学习的方法缓解了行动者评论家算法中出现的过估计偏差,但忽略了来自低估偏差的影响。其次,在使用传统经验回放机制的行动者评论家算法中仍然存在着低效采样导致的缓慢学习。本文主要针对以上问题,对现有算法做出了结合和改进,具体的研究内容可以总结为以下三个方面:(1)目前使用单一估计器进行更新的行动者评论家算法,在计算值函
学位
疫情大环境下,健康管理的重要性日渐突出,体检是个人健康管理的重要组成部分,体检中的筛查项目能够在早期发现疾病,及时治疗和防预可以增加治愈的可能性。当前医疗机构提供的体检报告仍十分原始,纸质版和电子版均存在可读性不佳的问题,受检者阅读体验受限,无法全面读懂健康状况,对个人健康管理的执行造成阻碍。可视化是将人眼不敏感的数字、文字等信息图形化以提升视觉体验,是解决可读性不佳问题的有效手段。本课题从可视化
学位
随着目前空战武器装备的迅猛发展,对于高空高速大机动目标的轨迹预测越来越占据重要的战略地位。为了解决目前存在的目标轨迹预测不足的问题,本文提出了融合小波分解(wavelet decomposition, WD)和长短期记忆(long short term memory, LSTM)网络的模型来对机动目标的轨迹进行预测。首先,通过小波分解将输入的轨迹时间序列分解为1个低频分量(CD1)和3个高频分量(
期刊