论文部分内容阅读
多年来,我国在中低温热能利用领域中对于实际热力循环的构建的基础理论缺乏突破,导致构建方法层面缺乏有力指导,使得此类实际热力循环效率不高,热力学完善度很低,制约了我国对中低温热能的有效利用。针对实际热力循环构建方法不明确的问题,已有学者提出通过改变循环工质协同性以提高所有热力过程性能的技术路线,进而发明了热力循环三维构建方法。该循环中使用的工质为非共沸工质,循环过程中通过工质的混合与分离,实现非共沸工质在多种组分之间的调节,从而满足所有热力过程对工质热物性的要求,通过同时提升循环中多个热力过程的实际效率,进而提高循环整体性能,实现整体循环向理想循环的逼近。
T形管可作为非共沸工质组分调节的部件,具有成为热力循环三维构建中的重要执行器的潜力,但其相分离规律,尤其是有机工质作为工作流体情况下的相分离规律尚不明确。鉴于此,通过采用三维数值模拟方法,基于欧拉方法和κ-ε湍流模型,对水平T形管内R22和R134a两种有机工质的两相分离过程进行了模拟,并与现有实验和唯象学模型数据进行了对比,获得了纯工质两相流在T形管内的流动特性和相分离参数影响规律。结果表明,入口质量流量对相分离有显著影响,当入口质量流量在100~500kg?m-2?s-1范围内,支管气相质量分离比FG随入口质量流量的增大而增大。两种不同工质R22和对质量分离比的影响可以忽略不计,此外发现支管入口处存在两个对称的涡。
尽管T形管的应用已经从石油工程领域扩展到新兴的先进热力循环领域,但针对T形管局部压降的研究仍然不足。因此,基于欧拉方法,对水平T形管内两相流建立了三维数值模型,获得了准确的交叉口处压力分布,以及支管入口处压力分布,对局部压降系数进行了参数化研究,并且在考虑质量分离比F、密度比和直径比的情况下,拟合了两个新的局部压降系数。结果表明,压力在T形管交叉口处急剧下降,然后在支管进口段上升,最后压力沿流体流动方向下降。局部压降系数预测模型可以更准确地预测T形管处两相流的局部压力损失。对于入口-顺流出口管段压降系数K12J,93%以上的数据预测误差在±15%以内;对于入口-支管出口管段压降系数K13J,90%以上的数据预测误差在±30%以内。
作为热力循环三维构建方法中重要的分离部件,T形管分离器内非共沸工质的组分分离规律对实现组分的控制至关重要。为了明确T形管内的组分分离规律,对非共沸混合物R134a/R600a在水平T形管内的组分分离进行了数值模拟研究及相间传质模型的讨论,揭示了实验无法获得的组分R134a的流速、密度和质量分数分布等流动细节,获得了在入口干度为0.1~0.4的情况下的组分分离效率。结果表明,当入口干度为0.204时,R13a的质量分数在0.44~0.70之间变化。组分R134a在液相中的质量分数小于在气相中的质量分数。相分离比对组分分离有影响。
明确T形管内两相流动过程中由于流动的不可逆的相互作用产生的熵产,有助于更深入理解流动特性及后续组分分离效率进行优化研究,且能为T形管分离器的能量分析和循环系统的能量分析提供数据支撑。通过计算流体力学方法对三种熵产率的计算模型(Bajan方法,Revellin方法以及热力学力与通量方法)进行了计算和分析。将上述三种方法编写用户自定义函数(UDF),编译并加载到FLUENT18.0软件,求解熵产率。结果表明,熵产率最大值均出现在交叉口位置,且靠近支管进口处位置。针对纯工质和混合工质两种计算工况,通过Bajan方法计算得到的总熵产率最小,而通过Revellin方法计算得到的总熵产率最大,即Sm1<Sm3<Sm2。Revellin方法在计算熵产率方面更为准确,而热力学力与通量方法给出了各种不可逆因素引起的熵产率表达,有助于更加细致的对两相流系统进行能量计算和分析。
在上述研究基础上,选取了两个循环系统进行案例分析,其一是正循环组分可调型有机朗肯循环系统,其二是逆循环基于非共沸工质的家用冰箱系统,两种系统均采用T形管作为分离器。基于上述循环,通过热力循环计算,获得了T形管分离器的出口分离参数对循环的性能的影响。结果表明,针对组分可调型有机朗肯循环系统,当T形管相分离比增大时,循环效率增大。在R245fa的组分占比为0.5851时,循环输出功和热效率达到最大值,且当相分离比从0.1变化至0.7时,热效率最小为11.95%,最大为13.18%。T形管的压力变化影响该组分可调有机朗肯循环效率,合理的相分离比可以提高热力学循环效率。T形管的压降会引起组分扩散,但相变量很小,对该组分可调有机朗肯循环效率影响不大。对于基于非共沸工质的家用冰箱系统,随着初始组分比z的增大,性能系数COP先增大后减小,通过选择最佳的共沸混合物初始组分比,可以获得最大COP。此外,性能系数COP对分离器出口处R290组分的变化较为敏感,但不同分离器出口的质量分离比对性能系数COP的影响趋势不一致。
T形管可作为非共沸工质组分调节的部件,具有成为热力循环三维构建中的重要执行器的潜力,但其相分离规律,尤其是有机工质作为工作流体情况下的相分离规律尚不明确。鉴于此,通过采用三维数值模拟方法,基于欧拉方法和κ-ε湍流模型,对水平T形管内R22和R134a两种有机工质的两相分离过程进行了模拟,并与现有实验和唯象学模型数据进行了对比,获得了纯工质两相流在T形管内的流动特性和相分离参数影响规律。结果表明,入口质量流量对相分离有显著影响,当入口质量流量在100~500kg?m-2?s-1范围内,支管气相质量分离比FG随入口质量流量的增大而增大。两种不同工质R22和对质量分离比的影响可以忽略不计,此外发现支管入口处存在两个对称的涡。
尽管T形管的应用已经从石油工程领域扩展到新兴的先进热力循环领域,但针对T形管局部压降的研究仍然不足。因此,基于欧拉方法,对水平T形管内两相流建立了三维数值模型,获得了准确的交叉口处压力分布,以及支管入口处压力分布,对局部压降系数进行了参数化研究,并且在考虑质量分离比F、密度比和直径比的情况下,拟合了两个新的局部压降系数。结果表明,压力在T形管交叉口处急剧下降,然后在支管进口段上升,最后压力沿流体流动方向下降。局部压降系数预测模型可以更准确地预测T形管处两相流的局部压力损失。对于入口-顺流出口管段压降系数K12J,93%以上的数据预测误差在±15%以内;对于入口-支管出口管段压降系数K13J,90%以上的数据预测误差在±30%以内。
作为热力循环三维构建方法中重要的分离部件,T形管分离器内非共沸工质的组分分离规律对实现组分的控制至关重要。为了明确T形管内的组分分离规律,对非共沸混合物R134a/R600a在水平T形管内的组分分离进行了数值模拟研究及相间传质模型的讨论,揭示了实验无法获得的组分R134a的流速、密度和质量分数分布等流动细节,获得了在入口干度为0.1~0.4的情况下的组分分离效率。结果表明,当入口干度为0.204时,R13a的质量分数在0.44~0.70之间变化。组分R134a在液相中的质量分数小于在气相中的质量分数。相分离比对组分分离有影响。
明确T形管内两相流动过程中由于流动的不可逆的相互作用产生的熵产,有助于更深入理解流动特性及后续组分分离效率进行优化研究,且能为T形管分离器的能量分析和循环系统的能量分析提供数据支撑。通过计算流体力学方法对三种熵产率的计算模型(Bajan方法,Revellin方法以及热力学力与通量方法)进行了计算和分析。将上述三种方法编写用户自定义函数(UDF),编译并加载到FLUENT18.0软件,求解熵产率。结果表明,熵产率最大值均出现在交叉口位置,且靠近支管进口处位置。针对纯工质和混合工质两种计算工况,通过Bajan方法计算得到的总熵产率最小,而通过Revellin方法计算得到的总熵产率最大,即Sm1<Sm3<Sm2。Revellin方法在计算熵产率方面更为准确,而热力学力与通量方法给出了各种不可逆因素引起的熵产率表达,有助于更加细致的对两相流系统进行能量计算和分析。
在上述研究基础上,选取了两个循环系统进行案例分析,其一是正循环组分可调型有机朗肯循环系统,其二是逆循环基于非共沸工质的家用冰箱系统,两种系统均采用T形管作为分离器。基于上述循环,通过热力循环计算,获得了T形管分离器的出口分离参数对循环的性能的影响。结果表明,针对组分可调型有机朗肯循环系统,当T形管相分离比增大时,循环效率增大。在R245fa的组分占比为0.5851时,循环输出功和热效率达到最大值,且当相分离比从0.1变化至0.7时,热效率最小为11.95%,最大为13.18%。T形管的压力变化影响该组分可调有机朗肯循环效率,合理的相分离比可以提高热力学循环效率。T形管的压降会引起组分扩散,但相变量很小,对该组分可调有机朗肯循环效率影响不大。对于基于非共沸工质的家用冰箱系统,随着初始组分比z的增大,性能系数COP先增大后减小,通过选择最佳的共沸混合物初始组分比,可以获得最大COP。此外,性能系数COP对分离器出口处R290组分的变化较为敏感,但不同分离器出口的质量分离比对性能系数COP的影响趋势不一致。