论文部分内容阅读
早期诊断对于癌症的防治具有重要作用。在癌症的发生和发展过程中,尽管其形态结构并未发生明显改变,但其内部的电荷量和电荷的空间分布已发生一定变化,从而导致组织的电导率特性发生改变。因此,对组织内电导率的检测有望为肿瘤早期诊断提供重要的参考依据。磁声电成像(Magneto-acousto-electrical Tomography,MAET)是一种新型的成像技术,可用于探测在体组织的电导率分布。其成像原理是对放置于静磁场的生物组织施加超声激励,使组织内部产生振动并切割磁感线,从而在洛伦兹力作用下形成内部电流源,通过贴于组织表面的电极接收电信号,并根据电导率重建算法获得组织内电导率分布。该成像方法具有实时、在体、非侵入式检测等优势。然而目前超声激励所产生的组织振动幅度很小,电极两端仅能检测到微伏级磁声电信号。而由探头瞬时激励引起的电磁干扰信号能达毫伏级,由界面反射引起的电磁干扰信号强于磁声电信号,且磁声电信号易受接触阻抗、外界噪声等干扰。因此现有磁声电检测系统往往存在检测信噪比不高、电导率检测分辨率差和无法定量获得生物组织内电导率分布等问题。基于此,本论文围绕磁声电成像系统构建及应用,重点解决检测系统的抗外界噪声和电磁干扰等问题,并探讨了线性扫频时宽、多点聚焦、激励频率和短脉冲个数等对电导率检测分辨率的影响。本论文主要开展的研究工作如下:1.抗外界噪声和电磁干扰的磁声电成像系统构建及方法研究。采用去除电磁干扰及外界噪声信号的诸多有效方法,设计并搭建基于线性调频激励的磁声电检测系统及基于短脉冲激励的磁声电检测系统来实现样本电导率非连续区域的测量。通过大量实验验证了改进方法的有效性及磁声电检测系统的准确可重复测量性,并提出提高电导率检测分辨率的若干方法。2.基于线性调频及多点聚焦的磁声电成像系统构建及方法研究。针对探头瞬时激励功率大,探头聚焦点对磁声电幅值影响较大,电导率检测准确度不高,率先提出基于多点聚焦的线性调频磁声电成像方法。为避免探头瞬时激励功率大,采用线性调频chirp信号作为激励源,通过实验验证了线性扫频理论的正确性,并验证了线性扫频时宽是影响电导率分辨率的主要参数。为克服探头聚焦点对磁声电幅值影响,提出采用在Z轴方向步进电子聚焦激励的多点聚焦方法来提高电导率检测分辨率。相比单点聚焦B扫描成像方法,多点聚焦B扫描成像方法具有更好成像分辨率。此外还对猪肉离体组织进行了电导率B扫描成像,获得了猪肉组织轮廓。3.短脉冲磁声电分布重建方法及其B扫描重建方法研究。针对现有磁声电成像方法难以获得组织内电导率分布,提出短脉冲磁声电分布重建方法及其B扫描重建方法。首先,基于COMSOL数值仿真数据及实测磁声电数据展开电导率分布重建过程的验证。通过对接收到的磁声电信号与探头声压信号进行解卷积来实现电导率相对分布的重建。通过对内嵌高浓度仿体进行数值仿真实验,验证了基于短脉冲磁声电检测理论及方法的正确性。其次通过对均匀仿体,拉高均匀仿体,分层均匀仿体及猪肉离体组织进行电导率准确性测试及分辨率测试实验,证明短脉冲磁声电检测方法及一维磁声电导率分布重建方法是正确且可行的。最后对猪肉离体组织进行电导率B扫描实验,获得了猪肉组织轮廓。总之,通过以上研究,本论文已成功搭建了基于多点聚焦及线性调频激励的磁声电检测系统及基于短脉冲激励的磁声电检测系统。初步解决了磁声电信号信噪比差,单点聚焦成像分辨率不高,一维电导率分布重建及B扫描难以实现等问题。本论文对磁声电成像方法进行了较为系统的研究,为磁声电成像的系统构建及应用提供重要的参考价值。