论文部分内容阅读
随着高新技术的发展及其与材料科学、生物科学以及固体物理的渗透,基于某些物理特性的一系列光、电、热、磁等功能配合物的研究正在迅猛发展。配合物的许多特殊功能与其电子行为有密切的关联。例如配合物中金属离子间的不同电子排布、不同电子耦合及电子交换可能引起不同的磁学性能;金属离子外层电子的跃迁和转移的不同能够呈现出不同的氧化还原特性,进而表现出某种特有的催化性能;配合物体系间的电子转移和能量传递还可能引起某些生化性质的变化。由此看来,研究配合物体系中电子的跃迁、传递和转移等变化行为对配合物的性能研究具有重大的意义。表面光电压光谱(SPS)是探测固体表面电子跃迁和转移等表面电子行为的一种有效手段,能够检测到由入射光诱导而引起的固体表面电荷的变化。它不仅与由光吸收引起的电子跃迁过程有关,还直接反映了光生电荷的分离和转移特性。目前,它已被成功的应用到光激发表面相互作用的电子转移、染料的敏化过程、光催化研究以及固体材料表面和相间的电荷转移过程等方面。但借助表面光电压光谱研究配合物表面电子行为的报道还不多见。我们将配合物的表面光电压光谱与紫外-可见吸收光谱进行对比分析,首次将半导体的能带理论与配合物的晶体场理论结合起来并与化合物的结构相关联,解释并分析指认了表面光电压光谱中的一些响应带,研究了配合物在光诱导下的表面电子行为,可为新型配合物光电材料的研制和发展提供一定的参考和依据。1.采用常规及溶剂热合成等方法,以Mn,Ni,Cu,Ti等为中心金属合成了27种配聚物及超分子,全部得到了单晶体,测定了它们的晶体结构,给出了明确的结构解析。它们的分子式如下:[1]以Mn(Ⅱ/Ⅳ)为中心的配合物:(1)[Mn(tpha)(phen)]n;(2)[Mn(na)2(H2O)2]n;(3)[Mn(m-tpha)(phen)]n;(4){[Mn3(m-tpha)2(m-Htpha)2(bipy)2]·2H2O}n(5)[Mn(2,3-dcp)(H2O)]n;(6)[Mn(3,5-dcpyrazole)(H2O)2]n(7){[Mn(OX)1.5(H2O)]·Cl}n(8){[Mn(phen)2(OH)Cl]·Cl·(OH)·(C9H11NO2)·2H2O};(9)[Mn2(C8H7O2)4(phen)2(μ-H2O)];(10)[Mn2(btec)(phen)2(H2O)6]·2H2O;(11)[Mn(phen)2Cl2];(12)[Mn(phen)2Cl2]·C6H5COOH;(13)[Mn(phen)2Cl2](HOC6H4CHO)2·H2O;(14)[Mn(2,5-dcp)2(H2O)2];(15)[Mn(2,5-dcp)(phen)(H2O)]·H2O;(16)[Mn(INA)2(H2O)4];[2]以Ni(Ⅱ)为中心的配合物:(17)[Ni3(btc)2(H2O)14]·4H2O(18)[Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O(19)[Ni(3,5-dcpz)2(H2O)2]·H2O(20)[Ni(2,5-dcp)(H2O)4]·2H2O(21)[Ni(otpha)(Imh)3(H2O)2]·H2O[3]以Cu(Ⅱ)为中心的配合物:(22)[Cu2Cl4(phen)2](23)[Cu(C9H7NO)2](24)[Cu(phen)(H2O)2·SO4][4]以Ti(Ⅲ/Ⅳ)为中心的配合物:(25)[Ti2O0.5(SO4)0.5(btec)·H2SO4]n·H2O(26){[TiO(SO4)2]·(C10H10N2)}n·2H2O(27){[Ti1O(SO4)(HSO4)][Ti2O(SO4)(HSO4)]·(C10H10N2)}n·5H2O2.采用SPS技术测定了全部化合物在光诱导下的表面光电压光谱和场诱导表面光电压光谱。测定结果表明,全部化合物均在300-800nm范围内呈现出正的表面光伏响应。但是表面光伏响应的强度、位置、数量以及光伏响应带的形状是明显不同的,这与化合物的结构,中心金属离子的种类、价态和配位环境密切相关。可以总结得出以下规律性结论:[1]配合物的维度影响SPS的强度。化合物的维度越高,表面光伏响应的强度就越大。一般地,3D结构传输电子或空穴的能力最强,2D和1D次之,0D结构的则最弱。例如:化合物(1)-(3)分别是Mn(Ⅱ)离子形成的具有3D,2D和1D无限结构的配聚物,它们的表面光伏响应的强度表现为顺次降低。[2]分子间的连接方式影响SPS的强度。分子间的作用越紧密,距离越近,表面光伏响应的强度就越大。通过配位键和共价键结合的化合物的表面光伏响应强度要明显高于通过氢键连接的化合物。对于都是通过共价键和配位键连接起来的同维的聚合物,则分子间的弱相互越作用多,分子间连接越紧密,表面光伏响应的强度就会相对较强。[3]中心金属离子的种类和价态不同,其SPS响应带的数目明显不同。这主要是因为金属离子所呈现的d→d*跃迁响应带的数目不同造成的。[4]中心金属离子的配位微环境影响SPS的数量和形状。金属离子所处的晶体场配位环境不同,d轨道的分裂状况就不同,可能引起的d→d*跃迁光伏响应也不同。例如:Mn(Ⅱ)离子在强场和弱场下的d轨道的分裂可以呈现出2种不同的状况,强场条件下,Mn(Ⅱ)离子可能产生d→d*跃迁;弱场条件下,不能产生d→d*跃迁。另外,金属离子配位微环境的对称性越高,光伏响应带越平滑。3.将过渡金属配聚物及超分子化合物视为一种广义半导体。将半导体的能带理论和配合物的晶体场理论相结合,并参考晶体结构知识和光谱理论,圆满解释了各化合物的SPS响应带,并与其相应的紫外-可见吸收光谱进行了对比和关联,进一步证实了SPS指认的正确性。