论文部分内容阅读
随着经济发展和生活水平提升,人们越发追求穿着防护性和热湿舒适性。防水透湿膜不仅可以阻止液态水的渗透,还能有效传导水蒸气,广泛应用于冲锋衣、野战军服、医用手术服等防护服装。目前市场上的防水透湿膜主要包括热塑性聚氨酯(TPU)亲水无孔膜、聚四氟乙烯(PTFE)疏水微孔膜。TPU亲水膜的防水性是依靠其无孔实体结构,而透湿性取决于分子中亲水链段对水蒸气的“吸附-扩散-解吸”作用,所以TPU亲水膜透湿性能差,且无法透气。PTFE微孔膜内部孔道尺寸介于液态水和水蒸气之间,对液态水/水蒸气能选择性传质,从而具备防水透湿性能,且水蒸气在微孔中的扩散比在亲水链段间的传质更为容易,所以PTFE微孔膜具有更为优异的透湿性能。然而,PTFE微孔膜难以降解、弹性差,且生产工艺复杂。所以需要开发简单可行的生产工艺,制备具有高耐水压和高透湿率的新型防水透湿膜。静电纺丝具有操作简单、原料来源范围广等技术优势,所获得的纳米纤维膜表现出孔隙率高、孔径小、孔道连通性好等结构特点,因而引起了科研人员的普遍关注。科研人员通过静电纺丝法一步制备了具有高耐水压、高透湿率的纳米纤维防水透湿膜。然而,纳米纤维防水透湿膜在进一步提升人体穿着热湿舒适性方面依然面临着巨大挑战:纳米纤维防水透湿膜仅能通过汗液蒸发被动散热,无法在多变天气环境中主动调节皮肤表层微环境温度;且其防泼水性能差,易粘附皮肤表面的汗水和外界的液态水,导致其透湿散热性能降低。因此,亟需开发具有优异热湿舒适性的纳米纤维防水透湿膜。本文将围绕纳米纤维防水透湿膜热湿舒适性的提升,进行结构设计和机理研究。通过对纤维膜微观结构和表面能的协同调控实现了超疏水表面的制备,使纤维膜对液态水具备优异的抗粘附性,从而赋予纤维膜稳定的排汗散热功能。同时掺杂不同类型热管理功能材料,制备了一系列热湿舒适性逐渐增强的超疏水纳米纤维防水透湿膜。此外,还研究了纤维膜框架结构对其防水性和热湿舒适性能的影响规律。所取得的主要研究成果总结如下:(1)利用湿度诱导聚合物射流相分离成孔的方法调控纤维的表面结构,通过构建聚偏氟乙烯(PVDF)-溶剂-水的三元体系相图,分析了不同湿度环境中PVDF射流的相分离行为,构筑了具有类苦瓜表皮粗糙结构的PVDF纳米纤维;同时通过核壳纺丝法引入低表面能的FPU,改变壳层纺丝液的灌注速率以调控FPU负载量,在PVDF纳米纤维表面构筑了低表面能的FPU“铠甲”,最终纤维膜具有稳定的超疏水表面,多次负重摩擦测试后依然维持超疏水特性(水接触角为154o);且纤维膜中疏水小孔结构能有效阻止液态水的渗透,纤维膜耐水压为53k Pa。研究结果表明,协同调控纤维膜表面微观结构和表面能可以获得超疏水表面,为后续超疏水表面的构筑确立了调控准则;最终获得的纳米纤维膜具备稳定的超疏水特性和优异的透湿性能(透湿率为13.1kg m-2 d-1),有效避免纤维膜对液态水、汗水的粘附,使其能保持优异的透湿排汗散热功能。(2)在超疏水PVDF/FPU纳米纤维制备研究的基础上,在聚氨酯(PU)纳米纤维中引入高导热氮化硼(BN)纳米片和低表面能FPU,BN在纤维表面产生纳米级粗糙度,FPU有效降低了纤维的表面能,从而获得了超疏水的PU/FPU/BN纳米纤维膜(水接触角为153o),且纤维膜具备疏水小孔结构,表现出优异的防水性能,耐水压为32k Pa。同时,研究聚合物-溶剂-非溶剂体系组成对纤维堆积结构的影响规律,通过调节BN纳米片的负载量和纺丝环境相对湿度,成功在纤维膜中构筑了三维互连的BN导热框架,在保证纤维膜高透湿性能的前提下实现了其导热性能的大幅提升。最终获得的纳米纤维膜不仅可以透湿排汗散热(透射率为11.6kg m-2 d-1),还可以高效传导散热(水平方向、垂直方向导热系数分别为17.9W m-1 K-1、0.29W m-1 K-1),能迅速将人体皮肤上的热量传递到周围环境中,让穿戴者保持凉爽和舒适。(3)将静电纺丝与静电喷雾技术相结合以制备双层复合防水透湿膜,通过高浓度PU/FPU溶液静电纺丝构筑纳米纤维微孔膜,利用稀溶液静电喷雾构筑多孔层。通过调控体系中组分构成,控制Ti O2纳米颗粒被PU/FPU包裹,从而搭接形成三维互连的疏水小孔框架,获得了具有稳定的超疏水特性(水接触角为156o)和优异防水性能(耐水压为51k Pa)的复合双层膜。同时,研究Ti O2纳米颗粒粒径对太阳光反射率的影响规律,构筑了能大幅提升PU/FPU纤维膜热反射性能的Ti O2粘连框架,且PU/FPU纳米纤维膜和层都具有连通孔道结构,对水蒸气具有高传质速率。最终双层复合膜不仅具有良好的透湿性能(透湿率为11.8kg m-2 d-1),还具有优异的热反射性能,在太阳光400-2500nm波段反射率高达85.7%,能有效反射太阳光辐射热量、减小阳光照射环境下皮肤表面温度的升高,适用于户外降温。(4)通过溶液共混引入具有主动热储存/释放功能的正十八烷相变胶囊(PCC)和低表面能FPU,获得了玉米棒状结构的PU/FPU/PCC纳米纤维,PCC在纤维表面形成纳米级凸起,从而纤维膜具有稳定的超疏水性能(水接触角为153o)。通过调控PCC的负载量,降低纳米纤维的直径和纤维膜的孔径,从而纤维膜防水性能大幅提升(耐水压高达84k Pa)。同时,PCC中正十八烷的固/液可逆相转变行为赋予了纤维膜温度调节功能,PCC/PU间的强结合力与PCC稳定的封装结构,避免复合纤维中相变胶囊的脱落和正十八烷的泄漏,多次循环加热/冷却过程后,纤维膜依然具有高相变焓。所制备的PU/FPU/PCC复合纤维膜不仅具有高透湿率(11.4kg m-2 d-1),还具有稳定的蓄热调温功能(相变焓为74J g-1),实现了纤维膜在多变天气环境中对人体的温度调温,不仅在炎热环境中可以降温,又能在天气变冷时保暖。