【摘 要】
:
Painlevé分析方法对于研究非线性微分方程可积性质和求解是一种十分有效的方法。本文首先考虑一个Hamilton函数为H的四维广义Lorenz系统。利用Painlevé分析的方法,进行奇异流形展开,通过调谐因子项将其进行有限项“截断”,证明了该系统具有Painlevé可积性,并由此导出了该系统的B cklund变换和奇异流形所满足的Schwarz导数方程。通过研究相关的Schwarz导数方程的性
论文部分内容阅读
Painlevé分析方法对于研究非线性微分方程可积性质和求解是一种十分有效的方法。本文首先考虑一个Hamilton函数为H的四维广义Lorenz系统。利用Painlevé分析的方法,进行奇异流形展开,通过调谐因子项将其进行有限项“截断”,证明了该系统具有Painlevé可积性,并由此导出了该系统的B cklund变换和奇异流形所满足的Schwarz导数方程。通过研究相关的Schwarz导数方程的性质,求出广义Lorenz系统的不同形式的精确解。文章的另一个内容是从一个22谱问题出发,导出了一族孤子方程。然后利用Painlevé分析的方法,证明其具有Painlevé可积性,并导出其对应方程的B cklund变换。同时对修正Jaulent-Miodek方程、STO系统进行了Painlevé分析和求解。
其他文献
有限维完全可积系统在微分方程的发展历程中占有重要的历史地位,但得到完全可积的系统大多依赖于一些特殊的技巧,因而发现的有限维完全可积系统十分有限。而孤立子方程作为无穷维可积系统却大量存在。非线性化方法沟通了无穷维可积系统与有限维可积系统间的内在联系,使得可以从孤立子方程的Lax对直接得到有限维完全可积系统.本文通过研究一个二阶矩阵谱问题,引入非线性约束,得到一个有限维完全可积系统,然后利用Painl
作为中国计算数学的开拓者,冯康院士在1984年第一次提出了具有维持Hamilton系统的辛结构不变性质的算法,即辛几何算法.经过多年发展,到了二十世纪九十年代, Marsden, Bridges, Reich在辛算法的基础上又提出了多辛算法.如今辛几何算法在理论和实践中都取的了进一步发展,并成功地解决了许多实际问题,模拟了各种物理现象.本文讨论了具有任意次非线性项的Klein-Gordon方程的辛
中国传统数学学习方式存在不足,时代发展对数学教学方式提出了新要求,为转变中国初中生数学学习方式、呼应时代发展要求,数学实验研究历时20余年、经历四个阶段,以解决问题为导向、系列课题为引领、课程建设为抓手、项目团队为支撑,推动数学实验的研究、实践和推广,建立基于数学实验的学习方式变革系统:以初中生数学学习方式的转变为核心目标,基于数学实验,构建实现数学学习方式转变的基本理论系统、实践指导系统和教学支
本文主要研究四阶非线性微分方程积分边值问题的一个正解和多个正解的存在性问题。首先,我们研究了如下的四阶非线性微分方程的积分边值问题的一个正解和多个正解的存在性问题。利用锥压缩锥拉伸不动点定理及一些分析技巧,我们建立了一些保证该类积分边值问题存在一个正解和多个正解的充分条件,且所得结果推广和改进了文献[1]中的一些相关结论。其次,我们还研究了如下的具有变号非线性项和非线性积分边值条件的四阶奇异非线性
单复变函数的几何理论是复分析理论中的一个重要的研究方向,复值映照类的Bloch常数和Landau定理等单叶半径估计问题是单复变函数理论中的重要研究问题之一。调和映照作为全纯函数的推广,它在医学、电磁学、流体力学和弹性等问题以及偏微分方程、微分几何、Teichmuller空间等一些数学分支中具有广泛的应用,引起人们的关注,已成为复分析领域中一个热门的研究课题。因此对调和映照理论的研究具有重要的意义,
本论文主要研究以下两部分内容:在第二章中,讨论了当无穷直线发生微小光滑摄动ω( x)后Hilbert边值问题解的状况,并讨论了解的稳定性。特别的,当指标κ< 0时,给出了扰动拟可解和拟解的定义。章红梅讨论了无穷直线发生光滑摄动以后Riemann边值问题解的稳定性,其中要求摄动ω( x)在无穷远处取值为0。而在本章节中我们并不要求摄动ω( x)在无穷远处的取值为0,也就是在无穷直线上的任意点都是可“
本文对动力系统中的一类集合L(x1,x2)作了推广,研究其相关性质并得到等度连续系统的一个刻画。同时还利用范畴论中范畴和函子的概念对动力系统与其包络半群之间的关系作了比较深入的讨论。在第一章中,介绍了必要的定义和记号。在第二章中,对文[4]和[5]中介绍的一类集合L(x1,x2)作了进一步的讨论。首先对其定义作了推广,并研究了推广后的集合类的相关性质,进而给出了等度连续系统的一个刻画。其次,对集合
整体解读是开展大单元教学的基础和前提,整体解读要突出一个“整”字,要基于互文性理论,在群文之间找寻可供整合、重组、归并的逻辑序列,打通文本壁垒,建立文本联结。以统编高中语文教材必修下册第六单元为例,经比较研读,可以确定以下关联点和基本议题:扭曲与变形:异化之下的生存困境与本能反抗;荒诞与真实:悖谬之下的价值困境与机械选择;逃避与抗争:挣扎之下的精神困境与出路探寻;突转与反常:巨变之下的命运困境与必
振幅与位相调制光束的传输特性是一个十分重要的研究课题。经振幅或位相调制产生的部分相干光束、涡旋光束和高阶贝塞尔光束具有种种特点,研究其传输特性对于其在惯性约束核聚变(ICF)、光学通信和光学操控等方面的应用具有重大意义。在本论文中,我们对经振幅或位相调制产生的部分相干光束、涡旋光束和高阶贝塞尔光束在传输过程中的光强、相干度和偏振度变化进行了详细的研究,同时研究了大功率多芯红光LED的空间相干特性,
近年来,许多学者对柱对称矢量光束的产生和应用进行了大量的研究。柱对称矢量光束场的强度和偏振分布在光束横截面上具有轴对称性。其中电场振动方向始终沿着径向的径向偏振光束和沿着方位角方向的角向偏振的光束引起了广泛的关注。由于它们的独特的偏振特点,使其在激发表面等离子,印刷术,光学捕捉和操作,材料加工等方面有着广泛的应用。因此,对柱对称矢量光束的传输特性的研究具有重要的理论和实际意义。在本论文中,我们以非