4-氨基硫代酚调控的Au@Ag纳米颗粒的制备及其对亚硝酸盐的检测应用

来源 :成都大学 | 被引量 : 0次 | 上传用户:shiyigudan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氮不仅是生物生命体中主要营养成分,也是植物中叶绿素的重要组成部分。我国的化肥年产量一千万吨,约占全球的35%,除了部分氮肥被植物吸收以外,其余化肥的“径流”成为了亚硝酸盐危害的重要根源。此外,由于城镇化和工业化的快速发展,生活垃圾和工业废水的大量排放也导致了亚硝酸盐和硝酸盐广泛存在于土壤和地下水中,是土壤硝酸盐累积以及海洋水体富营养化的主要原因之一。与此同时,饮水和食品中的亚硝酸盐对人体生命健康存在潜在危害,过量服用亚硝酸盐会引起高铁血红蛋白血症。因此,亚硝酸盐含量的测定对人们的生命安全具有重要意义。分光光度法是目前测定亚硝酸盐应用最广泛的方法之一,大多数分光光度法检测亚硝酸盐是基于亚硝酸盐与其他化学试剂发生重氮化反应进行的,然而由于有机染料的消光系数较低,致使该类方法的灵敏度相对较低。引入具有较高消光系数的等离激元纳米颗粒(PNPs),制备出具有独特功能的等离激元纳米传感器是解决该类问题的关键。由于PNPs具有独特的化学和光学性质,使得等离激元纳米传感器能够简单、高效、低成本且灵敏地应用于各种小分子检测。基于此理论背景,本课题设计了一种基于4-氨基硫代酚(4-ATP)调控的金纳米球(Au NSs)生长银(Ag)壳层的分光光度法用于检测亚硝酸盐的方案,计划通过消光光谱图实时监测Ag壳层的生长过程,预研究Au NSs上暴露的4-ATP与亚硝酸盐的脱氨反应对Ag壳层的生长速率的影响,并进一步探索4-ATP浓度、乙醇的体积分数、反应体系中的p H值以及Au NPs中Au原子浓度([Au~0])对4-ATP调控Au@Ag NPs生长过程的影响。实验采用控制变量法逐一研究影响NPs生长因素,并以20%乙醇,p H=3,[Au~0]=0.05 m M的实验条件为标准检测条件。通过对比Ag壳层在Au NSs上的外延生长速率,研究4-ATP在生长依赖检测过程中对亚硝酸盐的检测范围、响应灵敏度和选择的灵活性。由于此方法能够灵敏(检测限LOD=36 n M)且能在0~60μM范围内检测饮用水中亚硝酸盐的含量,因此,以国内饮用水作为样品模型对该方法检测饮用水水中亚硝酸盐含量进行可行性验证。本研究思路及方法具有推广性,该方法中NPs具有的优异光学响应、Ag壳层生长鲜明的加减速对比、传感配体可定制的基本设置,均为高性能检测方法提供了通用的设计方案。
其他文献
随着世界各国不断提高的环境保护标准和日益加重的能源危机,推动了绿色环保的新型润滑剂及其添加剂的发展。传统润滑剂因其含有磷、硫和氯等对环境有害元素而面临淘汰。聚乙二醇200(PEG200)润滑剂因其绿色无毒、可降解和低摩擦的特性,成为了传统润滑剂潜在的替代品。而润滑添加剂作为润滑剂中不可或缺的一部分,成为了科研人员的研究重点,碳纳米材料作为其中的佼佼者,也受到了广泛关注。但大量的研究表明,传统碳纳米
学位
压电陶瓷作为一种可将机械能和电能进行相互转换的重要功能材料,已经在社会经济、国防安全等多个领域得到了广泛应用。随着科学技术的发展,压电陶瓷正在从常规应用转向高温等极端环境下的特殊应用。BiYbO3-Pb(Zr0.48Ti0.52)O3是一种典型的三元系钙钛矿结构铁电体,它相对于传统的二元系PZT具有更高的居里温度(TC=391℃),有望作为敏感元件应用于工作温度超过200℃的器件之中。然而,该体系
学位
聚二甲基硅氧烷(PDMS)因其具备力学性能优良、无毒、生物相容性好等优点,在人工晶状体、医用导管、人工心脏瓣膜等生物医用材料领域具有广阔的应用前景。然而,由于PDMS本身的疏水性导致其在临床应用中表面易黏附细菌,以及与血液接触后容易凝血等,导致其在临床上的进一步应用受到限制。因此,有必要从材料学角度利用具有良好抗污特性的亲水类物质对PDMS材料进行抗污改性。通过物理或化学的方法在聚合物材料中引入亲
学位
超(超)临界发电机组参数的提升不仅可以提高发电效率更可以有效解决当前碳排放的热点问题。目前,国内超超临界发电机组的高温部位常用钢种多为国外进口,对于自主研发的耐热钢的高温性能还需进一步研究。此外,实际服役过程中发电机组高温零部件往往伴随蠕变现象,进而导致失效,故而对于机组用马氏体耐热钢焊接接头蠕变性能的研究成为热点。关于耐热钢焊接接头的蠕变性能的研究多为国外研发钢种,我国自主研发的耐热钢的焊接接头
学位
社会的发展使人类对能源的需求不断增加,发展可再生、无污染的新型能源成为当前要务。作为当今能源市场主要储能设备的锂离子电池虽具备容量大、循环寿命长、工作电压高等优点,但其存在的成本高、污染大、安全性低的缺点限制了其进一步发展。目前,具有安全环保、制造成本低、大电流充放电能力强等优良特点的水系锌离子电池被认为是一种能够替代锂离子电池的新型储能装置。然而,锌离子电池正极材料仍存在循环寿命不够理想等问题,
学位
乳腺癌的高发性已成为女性癌症中的主要杀手。手术切除依然是治疗乳腺癌的主要手段。这不仅会增加患者的痛苦,同时也会给患者造成极大的心理创伤。随着乳腺癌发病率的增加,切除后的乳房迫切需要修复,且寸尺的精准度也是一个挑战。这就需要不仅有较好的生物材料,且精准化个性定制才能满足上述的要求。3D打印技术包括计算机辅助设计,采用生物墨水精确调控,选择生物相容性较好的水凝胶,才能促进组织的再生,加速伤口的愈合。本
学位
近年来,随着抗生素的大量使用和废水的随意排放,导致水体环境安全越来越严峻。半导体光催化技术可利用太阳光将有机污染物降解,因绿色环保、能耗低、高效而备受关注。三氧化钨(WO3)禁带宽度适中、能在可见光响应并在酸性和氧化条件下稳定存在,被广泛应用于光催化研究领域。然而,单一WO3的光生电子-空穴对复合几率高,极大限制了WO3的实际应用。因此,围绕WO3材料通过与其他半导体材料复合构建异质结以提高其光催
学位
氢气作为一种清洁的可再生能源,具有燃烧值高,燃烧对环境无影响的优势。它是一种有前途的能源,可替代化石燃料。通过将氢能源与燃料电池技术有机结合,可以显著减少交通运输行业对石油和天然气的消耗,从而极大地提升能源安全水平。然而,氢能利用的最大瓶颈是其安全储存和快速释放。从储氢的角度讲,氨是较为理想的储氢材料,不仅分子含氢量高,且易液化易运输;更为重要的是,氨分解制氢是一个没有碳氧化物排放的过程。到目前为
学位
高性能压电材料具有高机电耦合系数、高压电系数、高介电常数等优异性能,为宽带、高分辨率、高灵敏度医学超声成像和水声探测及高功率密度压电能量收集器等器件研发带来了希望。铌镁酸铅-钛酸铅(Pb(Mg1/3Nb2/3)O3-Pb Ti O3,以下简称PMN-PT)二元系陶瓷是近年来快速发展的一种弛豫铁电材料,具有高介电、高压电、低烧结温度等特点,在微位移驱动器、超声换能器、加速度传感器等方面有广阔的应用前
学位
高熵合金因其能够形成简单的相结构而具备高硬度、高强度和耐腐蚀性等优异性能,有着良好的应用前景。多主元设计的高熵合金,虽然提高了材料的成分空间,但也对材料的优化设计增加了难度。目前,传统试错法和一些计算方法,如相图计算、密度泛函理论、分子动力学等对于指导高熵合金成分设计和发现优异性能往往存在成本高、花费时间长的弊端,所以,需要研究出一种新的手段以加速研究高熵合金的组分空间。近几年,随着对高熵合金的深
学位