论文部分内容阅读
随着材料科学的快速发展,传统的基于溶液的分析方法因为其繁琐的样品前处理、易引入污染以及只能提供样品整体的组成信息等不足已经远远满足不了现代科学的需求,因此发展固体直接分析法一直备受关注。本课题组自行研制的低压氦气辅助高功率密度激光电离飞行时间质谱(LI-TOFMS)被证实是一项非常优越的固体直接分析技术,应用范围涵盖了导体,半导体和非导体领域,可以同时进行包括非金属元素在内的多元素快速分析;此外,该项技术还可以实现无标准样品校准的半定量分析,这在固体直接分析中是非常关键的,因为基质匹配的固体标准样品一般难以获得。本论文主要是基于该项技术发展其对实际固体样品组成的空间分布分析方法,其中包括有一维元素分布分析、二维元素分布分析和三维元素分布分析,这三部分研究内容简要介绍如下:1、一维元素分布分析该项研究利用扩束镜和光阑来提取能量相对均一的脉冲激光中心光斑,并将其应用于薄层深度分析的均一溅射取样。首先利用纳秒激光电离飞行时间质谱(ns-LI-TOFMS)对单镀层和多镀层的薄层样品进行深度分析,并获得的激光平均溅射速率(儿Ai?(Zn)= 1.3JMm/pulse)和深度分辨率(AZ(Zn)= 2.4/?m)均为微米水平。为了进一步优化该项技术的深度分辨率,我们引入飞秒激光,并对比了两种激光模式(纳秒和飞秒激光)下的深度分析能力,结果表明飞秒激光电离飞行时间质谱获得的溅射速率(AAR/^)= 55m/mulse)和深度分辨率(△Z(Pd)= 310nm)均比纳秒激光优越了一个数量级;此外该项技术不仅可以应用于导体薄层样品的深度分析,还可实现对非导体薄层的深度分析。2、二维元素分布分析该部分内容是基于低压氦气辅助高功率飞秒激光电离飞行时间质谱(fs-LI-TOFMS)建立二维成像系统,首先对古代青瓷剖面进行2D元素成像,由青瓷剖面的瓷釉-过渡层-瓷胎三层结构的二维元素分布,据此探索了瓷胎和瓷釉之间的反应层的形成机理。其次,对唐代、五代、北宋和现代这几个不同文化时期的越窑青瓷的瓷釉和瓷胎进行了元素特征研究,瓷胎中被同时检测到的元素高达29个,瓷釉多达25个。其中瓷胎中的Fe和Ti以及瓷釉中的Ca、P、Mn和Mg可以作为区分不同朝代陶瓷的特征元素,甚至还可以用于现代仿制赝品的鉴别。最后,通过对比越窑(南方浙江)和耀州窑(北方陕西)青瓷的瓷胎和瓷釉元素组成,我们还探索了中国南方与北方青瓷的陶瓷原料以及烧制工艺的差异。3、三维元素分布分析该部分工作基于前面的深度分析和二维成像,并采用同样的技术一—低压氦气辅助高功率飞秒激光电离飞行时间质谱建立了三维成像系统。首先我们利用该系统对自制的四种高纯金属粉末(Cr、Fe、Ni和Cu)混合压片样品进行3D元素成像,并获得了 50 μm的横向分辨率和7 μm的深度分辨率,验证了该方法的可行性;之后,我们又将其应用于南丹铁陨石的3D元素成像,并获得10-6g/g的检出限和6个数量级的动态范围。对陨石中的亲铁元素(Ni和Co)、亲硫元素(Cu、Cr、V和Mn)和亲石元素(Li、Na、Mg、Al、K、Ca和Ti)的三维空间分布研究发现,亲铁元素主要富集于金属相中,亲硫元素富集于硫化物中,而亲石元素以硅酸盐包容物形式嵌在金属相中;另外在我们分析的立方体中三个非金属元素S、P和C是聚集在一起的。由这些元素的3D空间分布辅助探索了陨石的形成及演化。