【摘 要】
:
随着科学技术的发展,特别是无人厨房的出现,3D打印创意食品越来越风靡,逐渐步入人们的快节奏生活,3D打印肉制品也备受消费者关注。由于肉糜的流变特性不适于打印,限制了3D打印肉制品的快速发展。已有研究表明,加入辅料或采用物理方法(如超声波、超高压)可改善食品打印材料的流变特性。综合以上两种方法,本文采用超声波技术腌制鸡胸肉并制成肉糜,与豌豆蛋白、谷氨酰胺转氨酶(TG)混合后进行3D打印,以期开发出一
论文部分内容阅读
随着科学技术的发展,特别是无人厨房的出现,3D打印创意食品越来越风靡,逐渐步入人们的快节奏生活,3D打印肉制品也备受消费者关注。由于肉糜的流变特性不适于打印,限制了3D打印肉制品的快速发展。已有研究表明,加入辅料或采用物理方法(如超声波、超高压)可改善食品打印材料的流变特性。综合以上两种方法,本文采用超声波技术腌制鸡胸肉并制成肉糜,与豌豆蛋白、谷氨酰胺转氨酶(TG)混合后进行3D打印,以期开发出一种适合3D打印的双蛋白鸡肉糜体系。主要包括以下三方面内容:(1)研究了双蛋白鸡肉糜的3D打印基础条件;(2)研究了超声波技术对双蛋白鸡肉糜3D打印特性及产品品质的影响;(3)研究了贮藏期间3D打印双蛋白鸡肉块品质的变化。主要结论如下:(1)以持水性、流变、打印准确性、蒸煮损失、蒸煮后打印准确性、蒸煮后质构为评价指标,研究了双蛋白鸡肉糜的3D打印基础条件。结果表明,豌豆蛋白添加量为30%、水(4℃)添加量为30%、TG添加量为0.8%、打印温度为37℃(百分比以肉重计)时,打印准确性及蒸煮后打印准确性分别为106.06%和93.39%,流变得到了显著的改善,蒸煮后的产品硬度为293.98 g,弹性为12.32 mm,咀嚼性为17.03 m J。(2)以流变、打印准确性、蒸煮损失、蒸煮后打印准确性、蒸煮后质构、感官评定为评价指标,研究了超声波技术对双蛋白鸡肉糜3D打印特性及产品品质的影响。结果表明,超声温度为22℃、超声时间为45 min、超声功率为300 W时,打印准确性及蒸煮后打印准确性分别为103.57%和96.47%,流变得到了显著的提高,蒸煮后的产品硬度为330.8 g,弹性为15.51 mm,咀嚼性为21.19 m J。(3)以打印准确性、蒸煮后打印准确性、感官评定为指标,研究了贮藏期间3D打印双蛋白鸡肉块品质的变化。结果表明,4℃贮藏时间为180 min时,鸡肉块打印准确性及蒸煮后打印准确性分别保持在103%~105%和96%~98%,产品总体接受度较高。-18℃贮藏时间为180 min时,解冻后的鸡肉块打印准确性及蒸煮后打印准确性分别保持在102%~104%和95%~97%,产品总体接受度仍在人们可接受范围内。总之,本文阐明了豌豆蛋白、TG和超声波技术联合使用对双蛋白鸡肉糜3D打印特性及产品贮藏品质的影响,开发出了打印准确度高、成型率高、不易坍塌的肉糜体系,为3D打印肉制品的实际生产提供理论依据和技术支持。
其他文献
桑葚发酵酒是以微生物发酵制得的适于多数年轻人群饮用的果酒,是一种功能营养价值极为丰富的药、食兼用的饮品。不但桑葚果的功能营养成分得以充分的保留,又弥补了桑葚果季节性强、不易储存的缺点,成为极具开发潜力的新兴功能性食品。本实验选用新疆地区成熟、完好的“仟格丽”桑果作为发酵酒原料,在20-22℃下接种浓度为0.2 g/kg活化后的耐低温酵母LABA酵母,进行主发酵。在发酵过程中取样测定,分析其发酵过程
随着我国经济的腾飞,私家车的保有量呈指数型上升,立体车库为解决庞大数目车辆的停放问题应运而生。为确保立体车库和入库车辆的安全,需要提前对入库车辆进行重量和整车三维轮廓的超限检测。对于超重检测,压力传感器可以完美解决。但是对车辆整车三维尺寸的超限检测技术应用较多的仍是精度低、易受光照干扰的红外检测。双目视觉技术的出现为这一问题带来了新的解决方案。为满足立体车库超限检测的需要,本文研究了一种利用双目视
虚拟教学仿真实验具有逼真的3D演示效果,且可以借助网络共享,在教育领域广泛应用。在此背景下,本文结合高校图像处理实验课程,设计了基于VR的啤酒瓶检测虚拟仿真实验。仿真实验使用Unreal Engine 4引擎开发,3DS Max建模,使用鼠标和键盘交互设备操作实验。本文的主要工作内容有:第一:查阅文献资料,根据啤酒瓶检测系统的结构组成和工作原理,对仿真实验做出整体的设计框架和结构层次,包括实验UI
近年来人工智能技术的发展进入新阶段,迎来了第三次产业高潮,在潜移默化中地改变着人类社会的商业模式与生活方式。2017年国务院围绕发展战略、研究重点等内容,发布新一轮人工智能发展规划,部署产业发展规则,为未来20年人工智能产业的快速发展指明了方向。然而人工智能所具有的独立自主性、自我进化等技术特性,在有效提高知识产权创造、运用、管理、保护效率的同时,其对于产业结构变革的影响使知识产权的开发与授予模式
氟原子具有电负性大、极化率低、原子半径小等特点,因此含氟有机分子具有其他化合物不可比拟的优点,例如亲脂性等。含氟有机化合物这些优良特性使其在农药、材料、医药、建筑
光诱导可逆自组装在构建新结构、新材料方面具有简捷、经济、高效等特点,因而受到广泛关注。理论上,纳米颗粒的可逆光诱导自组装主要通过纳米颗粒表面修饰光敏配体分子的光致
ZnO作为一种带隙宽(3.37eV)半导体材料,广泛运用于光催化领域。但由于其吸收频谱位于紫外光区,光生电荷易复合,同时ZnO光催化剂不具有选择性,需通过ZnO纳米材料的表面敏化,拓
在我国建设双一流大学的关键时期,课程教学工作的重要性日益凸显,如何贯彻以学生为中心理念是对课程教学改革的考验,也是完善课程教学评价方式、促进教学能力现代化的必然要求。本研究以建构主义理论和多元智能理论为基础,将高校在读大学生作为研究对象,以构建以学生为中心的大学课程教学评价维度与标准为目的,对我国高校课程教学的设计、实施和改进工作进行研究。研究界定了以学生为中心、课程教学和课程教学评价等相关概念,
本课题针对钛合金在高温下易被氧化的缺点,使用镍基合金与不同含量TaC的混合粉末为熔覆材料,通过激光熔覆的技术在Ti6Al4V表面制备了具有优异的抗高温氧化和抗磨损性能的TiNi
近年来,5G技术在世界范围内掀起了新一轮的科技浪潮。5G技术不仅仅是网络速度的提升,更是全社会向数字化转变的基石。天线作为5G技术发展的载体已被引起广泛关注。在5G技术要求实现天线小型化的大背景下,低温共烧陶瓷(LTCC)技术因为具有体积小、损耗低、易集成的特点逐渐成为了天线制作的主要方法之一。本文首先设计了一个中心谐振频率分别为3.50GHz和4.85GHz的双频段曲折线型LTCC天线。研究了天