论文部分内容阅读
丁醇是一种具有较高的内能与热值,能与汽油以较高比例进行混合的能源。通过生物发酵法制备丁醇既有助于促进能源多样化,帮助我们摆脱对传统化石能源的严重依赖,也有利于减少温室气体排放,缓解对环境的压力。但是,在实际生产过程中也存在着许多亟待解决的问题,例如目标产物对于产溶菌株的毒性作用大、发酵产品难分离等。针对这些问题,本文首先利用响应面法优化探究丙酮丁醇梭菌与拜氏梭菌菌种吸附剂制备工艺条件,并通过丁醇在有机相中溶解度的不同,从油醇、正辛醇、油酸乙酯、油酸和醋酸丁酯5种有机溶剂中筛选出合适的萃取剂用作萃取发酵。研究结果表明,在菌种吸附剂制备中,当海藻酸钠量为0.55 g,分散剂与菌种溶液比为1.05,氯化钙浓度为8.24 g/L时,包埋丙酮丁醇梭菌和拜氏梭菌的海藻酸钙吸附剂具备最大吸附性能;在5种有机溶剂中,由于正辛醇对丁醇分配系数最高且对乙醇和丙酮的分配系数低,因此选择正辛醇作为萃取剂,进一步研究发现水相与有机相5:1的比例为最佳比例。其次,优化发酵工艺,通过考察热激对梭菌的影响,以及在不同比例的初始酵母抽提物浓度(0.0 g/L,0.01 g/L,0.05 g/L,0.1 g/L,0.15 g/L),不同比例的葡萄糖浓度(40g/L,50g/L,60g/L,70g/L)、不同pH(3.5,4.0,4.5,5.0,5.5,6.0,6.5)的情况下梭菌发酵结果。结果表明,当种子液经过热激后,初始酵母抽提物浓度0.1 g/L,葡萄糖浓度60 g/L,丙酮丁醇梭菌和拜氏梭菌发酵液初始pH分别为5.5和5.0时,发酵效果最好。优化后的梭菌固定化耦合萃取连续发酵中,待稳定后,折合发酵层总丁醇浓度基本稳定在12 g/L左右。最后,本文针对丙酮丁醇梭菌与拜氏梭菌的固定化耦合萃取连续发酵结果,结合Logistics方程建立梭菌固定化耦合萃取连续发酵菌体生长动力学模型;以发酵产物丁醇浓度与时间的关系,使用Luedeking-Piret方程建立梭菌固定化耦合萃取连续发酵产物生成动力学模型;以葡萄糖浓度与时间的关系,根据基质平衡原理建立梭菌固定化耦合萃取连续发酵底物消耗动力学模型。对以上模型进行验证,结果表明实验值与模型值匹配较好,利用该模型可预测丙酮丁醇梭菌与拜氏梭菌在固定化耦合萃取连续发酵产丁醇过程中菌体生长、底物消耗和产物生成的规律。