论文部分内容阅读
组合设计理论的主要研究对象是各种类型的有限关联结构。常见的有限关联结构有平衡不完全区组设计、成对平衡设计、可分组设计、横截设计以及t设计,有关它们的研究成果已经非常丰富。图的标号问题是图论中极有趣的研究课题之一,它是图论与组合设计的一种结合。Lee等[8]将图标号中的边幻标号与组合设计联系起来,提出了一种新的有限关联结构——幻三元系。对任意正整数n,我们定义[n]={1,2,…,n}。令X是集合[α],其中α≥3,B是X中三元组的集合,且|B|=β.若以下条件满足:(1)X中任意元素在三元组集B中出现的次数为^;(2)X中任意一对元素在B三元组同时出现的次数至多为2;(3)对于中B任意两个三元组{a,b,c),{d,e,f),满足a+b+c≡d+e+f(mod k)则(X,B)称为幻三元系(Magic Triple System),简称为(α,β,λ,k)-MTS,其中α称为幻三元系的阶。Shen Hao等[16]给出了幻三元系存在的一些必要条件以及幻三元系的一些构造。本文将扩展已有的理论成果,研究幻三元系的存在性和构造方法问题。