【摘 要】
:
目的:胃癌是消化系统最常见的肿瘤,也是全球最高发的肿瘤之一。胃癌死亡率居高不下的原因主要在于发生广泛的侵袭和转移,但胃癌发生侵袭和转移的分子机制仍然不是十分明确。因此,阐明胃癌侵袭和转移中的分子调控机制,将有助于探索胃癌转移新的诊断方法,为胃癌治疗提供新的靶点。GLUL(谷氨酸胺连接酶)是参与氮代谢过程中的一个关键酶类,可以把体内游离的谷氨酸与铵离子在ATP的催化下合成谷氨酰胺,进而为细胞代谢提供
论文部分内容阅读
目的:胃癌是消化系统最常见的肿瘤,也是全球最高发的肿瘤之一。胃癌死亡率居高不下的原因主要在于发生广泛的侵袭和转移,但胃癌发生侵袭和转移的分子机制仍然不是十分明确。因此,阐明胃癌侵袭和转移中的分子调控机制,将有助于探索胃癌转移新的诊断方法,为胃癌治疗提供新的靶点。GLUL(谷氨酸胺连接酶)是参与氮代谢过程中的一个关键酶类,可以把体内游离的谷氨酸与铵离子在ATP的催化下合成谷氨酰胺,进而为细胞代谢提供重要的碳源、氮源与能量。GLUL已被证实在多种肿瘤发生发展中起到关键性作用,然而其在胃癌中的调控机制仍不清楚。因此,本研究旨在探究GLUL在胃癌发生发展中的机制,为阐明GLUL在胃癌发生发展中的作用提供新的实验依据。方法:采用免疫组化法检测GLUL、N-Cadherin和β-Catenin在97例胃癌组织及相应正常组织中的表达情况,结合患者随访资料分析GLUL、N-Cadherin和β-Catenin蛋白表达与临床病理参数及预后之间的关系,选用正常胃粘膜上皮细胞株(GES-1)和胃癌细胞株(AGS、BGC823、MGC803、MKN45、SGC7901和KATOⅢ),Western blot检测GLUL、N-Cadherin和β-Catenin的蛋白表达情况,MTT法检测细胞增殖能力,Soft-agar实验检测细胞克隆形成能力,流式细胞仪检测细胞周期分布情况,划痕实验检测细胞的迁移能力,Transwell法检测细胞的侵袭能力,细胞免疫荧光检测细胞F-actin变化,GST-Pulldown和免疫共沉淀法检测蛋白相互作用,裸鼠成瘤模型和裸鼠转移瘤模型检测体内肿瘤生长与转移能力。结果:1.GLUL在胃癌组织中低表达,并与患者的N分期和TNM分期密切相关,且GLUL低表达患者的生存期明显低于GLUL高表达的患者。2.GLUL可以在体内外抑制胃癌细胞生长、迁移、侵袭与转移。3.GLUL抑制胃癌细胞生长与迁移不依赖于其酶活性,而是与β-Catenin蛋白竞争性结合N-Cadherin蛋白,促进N-Cadherin蛋白稳定性,抑制N-Cadherin蛋白的泛素化。4.GLUL与N-Cadherin在胃癌组织中同时低表达,且具有显著相关性,而β-Catenin在胃癌组织中高表达。结论:GLUL与N-Cadherin在胃癌组织中同时低表达,与患者的N分期和TNM分期显著相关,且GLUL蛋白低表达患者具有更差的预后。GLUL蛋白和β-Catenin蛋白可以竞争性与N-Cadherin蛋白结合,通过抑制N-Cadherin蛋白泛素化降解,促进N-Cadherin蛋白稳定性,还可促进β-Catenin泛素化降解,进而抑制胃癌细胞的生长、迁移、侵袭与转移。
其他文献
改革开放近40年以来,我国的经济发展取得巨大的成就,创造了中国经济增长的“奇迹”,中国经济的高速发展归因于由计划经济向市场机制、从单一公有制到多种所有制并存的巨大转变,释放了巨大的市场制度安排的红利。然而,在社会主义市场经济体制下,我国经济的发展也具有明显的政府特征,政府在改善市场环境、维持宏观环境稳定以及推进制度建设等方面有着重大贡献。特别是,近年来我国经济波动较为剧烈,宏观经济有所失衡,政府因
在多层级组织结构的企业中,中层经理是联结高管和基层员工的重要纽带,其重要性在管理实践中已经得到广泛认可。例如,当公司整体利益和业务部门不一致时,需要中层经理加以协调。针对员工的激励和监督政策,需要中层经理具体实施。囿于信息不完备性,公司难以事先通过制定一份完美无瑕的管理手册,细化或者规定中层经理在管理实践中如何应对未预期的情况,因此中层经理被赋予各种类型的自由裁量权。例如,销售部门经理可以根据外部
骨组织修复与再生的关键问题是骨组织修复或替换材料与骨组织的适配性及体内矿化性能。本研究针对骨组织修复与再生对支架材料矿化性能的要求,利用“碱性磷酸酶(ALP)调控透析矿化”的方法制备了一种与天然骨组织的结构和组成相近的纳米羟基磷灰石/壳聚糖(n-HAP/CS)复合支架材料,并对其进行了初步的生物学评价。本研究以分级多孔的三维CS支架为基质材料,利用“ALP调控透析矿化”方法,制备了三维n-HAP/
骨组织的形成是成骨细胞参与下的有机质模板矿化构建的多级有序结构的过程。在组织学中,模板就是细胞分泌的胶原蛋白组装而成的具有有序化液晶结构的osteoid(类骨质)结构,一旦osteoid矿化,即意味着骨质的形成。这一过程在体外难以模拟,使得多级有序的骨组织难以在体外构建。本论文体外构建仿osteoid结构并开展了成骨细胞在其上的生物矿化机制的探究,从而了解骨组织形成过程中模板与细胞加工的作用,进一
从712年到774年,伦巴德王国经历从强盛到灭亡的过程。期间,罗马教宗从隶属于拜占廷帝国转向依附于法兰克王国,并在意大利中部建立起“圣彼得国”。传统研究基于教宗立场,将伦巴德人视为意大利的入侵者和罗马教会的压迫者,强调双方之间对立和冲突的一面。近来,学者们从“罗马世界的转型”这一新的研究范式出发,通过历史与记忆的区分对核心史料进行重新解读,日益强调双方之间和平和合作的一面。从伦巴德王国的角度来看,
虽然目前已发展出诸如超分辨等许多先进的光学显微成像技术,但由于传统明场光学显微成像技术设备相对简单、操作相对方便,仍然广泛使用在医院病理诊断等生命科学的许多领域。而且在明场显微镜下进行病理诊断,依然是许多疾病例如恶性肿瘤判断的金标准。因此,不断提升明场显微镜的成像性能,以满足生命科学应用领域不断增长的需求,仍旧是显微镜学家的研究目标之一。为了改善明场显微镜的横向和轴向分辨率,实现明场光切片和三维成
随着人类寿命的增加和中国老龄化比例的逐渐上升,骨质疏松导致的骨缺损成为了目前骨科临床上较为常见的疾病,利用人工骨材料修复骨质疏松骨缺损是目前的主要技术手段。半水硫酸钙(α-CSH)具备可注射和自固化性能、无免疫源性、优良的生物相容性、骨传导性、在体内能完全吸收等优点,是目前临床上用量最多和应用范围最广的骨修复材料。本论文主要针对目前α-CSH在临床骨质疏松的治疗方面的还存在着活性较低、降解速率过快
光学显微成像技术在显微生物学的发展中发挥重要作用,同时成为材料学、医学、光学、能源等其他领域不可或缺的重要工具。随着16世纪第一台现代意义上的显微成像系统被研制,光学显微成像技术一直受限于光的衍射效应限制,导致生物学家用光学显微方法无法直接观测到200 nm以下的生物结构。近几十年来,随着相关光学技术和材料研究的进一步完善,越来越多突破衍射极限的超分辨显微成像技术被提出,2014年诺贝尔化学奖被授
充足的能量及营养供应是肿瘤细胞生长、浸润及转移的基础,能量代谢异常是肿瘤细胞最显著的特征之一。细胞能量代谢方式存在2种不同的主要类型:一种是在线粒体中发生的氧化磷酸化(Oxidative phosphorylation,OXPHOS)途径;另一种是发生于细胞胞液的糖酵解(Glycolysis)途径。机体的正常组织细胞采用OXPHOS作为能量的主要来源,肿瘤细胞通过能量代谢重编程,采用有氧糖酵解,即
目的:1.研究NDRG1基因(N-myc downstream regulated gene1,NDRG1)在不同类型儿童急性白血病(acute leukemia,AL)中的表达水平并探讨其意义。2.研究儿童急性髓细胞性白血病(acute myeloid leukemia,AML)经正规治疗不缓解,骨髓单个核细胞中NDRG1基因、转铁蛋白基因(transferring receptor gene,