论文部分内容阅读
ADS是可调阻尼控制悬架系统的简称,这是一种在汽车行业受到广泛应用的悬架系统。采用这种悬架的汽车在通过瞬态冲击路面时,可能会因控制器的响应时间不足,来不及对悬架进行控制,造成系统稳定性(操稳性和安全性)降低。这是由于悬架控制器的时滞效应导致在短时间无法对每一次控制进行响应。视觉识别技术在智能驾驶领域中已经被广泛应用,若能将这项技术作为悬架预瞄控制二次开发的工具,将其应用到悬架系统的控制策略中,就能在不平路面还未到来之前就对即将发生的情况做出准备,使控制器有充分的时间响应。为了使控制器的时滞效应得到改善,以提高悬架控制器的控制能力为目标。首先,本文对半主动悬架的动力学模型进行分析,通过状态方程,找出影响控制悬架阻尼力的关键参数;其次,本文对ADS电磁悬架进行了mHIL台架试验测试,准确地得到在车辆实际行驶过程中因各种外在干扰而无法直接测量的悬架K特性数据,并将所得到的测试数据的各对应关系存入TTC系列控制器;然后,对采集的图像进行特征提取和识别,将识别的特征与加速度传感器的采集的数据进行融合,传输到最终的控制系统里;最后,通过真实道路测试,对基于预瞄控制的悬架控制器控制效果进行评价。试验表明,相较于原厂的自适应阻尼控制策略,基于视觉预瞄的控制策略能够有效地降低车身横向加速度、纵向加速度和簧载质量垂直加速度,并且在10Hz附近的能量也得到较好的控制。预测距离是在整个系统中较为关键的参数,但这个参数可以通过控制器进行动态改写,只需对CAN总线中的车速进行提取,就能推算出动态预瞄距离。此方法对悬架的改造量小,又能获得与主动悬架相媲美的性能,为智能化零部件的开发提供了一种新的思路。