论文部分内容阅读
太阳风是充斥于整个行星际中的稀薄等离子体流。行星际空间中的所有物理现象和过程都发生在太阳风这一背景环境之中,对人类社会影响巨大的灾害性空间天气事件的发生和发展过程很重要的一个环节也就处在太阳风中。探测和了解太阳风的状态和变化是开展空间科学研究、进行空间应用的基本需求。因此一直是空间探测的重要对象之一。目前,世界上各航天大国积极开展各种的空间探测计划,不同科学目标和探测方式的卫星、探测器等不断地飞向太空。例如,美国航天局最近十年,先后发射了 STEREO,New Horizon,Van Allen Probes,MAVEN,MMS等科学卫星。欧洲、俄罗斯、日本和印度等国家的航天局,或通过合作或独立开发方式也积极加强了空间领域的探索,先后发射了Mars Express、Rosetta、ExoMars-TGO、Spectr-R、Solar-B、Mangalyaan 等卫星。我国早在70年代就进行太阳风相关的测量实验,近些年来开展的双星计划、嫦娥工程、"天宫"空间站等也涉及太阳风的测量。随着我国深空探测的实施,我国将会在太阳风相关领域的研究作出重要贡献。在国家自然科学基金的支持下,进行太阳风离子质谱分析器的读出电子学读出方法的研究,用于获取太阳风的离子成分、速度和能谱等物理参数。离子质谱仪是探测太阳风的一种重要工具。结合不同的离子探测技术,目前,太阳风离子质谱主要有3种探测方案:基于磁场分析器的测量方案、基于能量损失—能量TOF探测器的测量方案和基于次级电子发射TOF探测器(SEE-TOF)的测量方案。考虑到能量测量范围、时间分辨等方面的要求,本课题的半空间宽能谱太阳风离子探测分析器采用了 SEE-TOF)的测量方案。通过调研类似空间探测项目(例如,WIND、IMAGE、Chandrayaan-1、Van Allen Probes、MAVEN等卫星)的电子学读出方案,结合半空间宽能谱太阳风离子探测分析器的设计要求,确定了由前置放大器、恒比定时器、时间—数字转换器等组成的读出方案。本论文将介绍该太阳风离子质谱仪的读出方法和电子学设计,包括其飞行时间测量方案、前端模拟模块、数字处理模块和数据获取软件等方面设计,并对该读出电子学进行了实验室测试和离子束流测试。各章节内容如下:第一章介绍太阳风及其探测的重要性,特别是太阳风离子成分的研究意义,同时介绍了国内外对太阳风离子的探测进展。最后,阐述本论文的研究目的和基本构想。第二章介绍了太阳风离子的探测技术和由这些测量技术构成不同的太阳风离子成分测量的方案,并介绍不同方案的特点。第三章介绍国家重大科研仪器设备研制专项—半空间宽能谱太阳风离子探测分析器的目标和需求等,该仪器的测量方案、系统组成与设计仿真以及仪器对电子学的性能要求。第四章介绍空间实验中常用的质谱仪的电子学的读出方案,并比较这些方案的特点,并结合仪器设计要求确定本课题的电子学读出方案。第五章介绍空本课题的TOF质谱仪的电子学的设计,包括前端模拟模块的前置放大电路、恒比定时(CFD)电路的设计和数字处理模块的FPGA选择、FPGA-TDC和状态监测电路、数据压缩算法等的设计。第六章介绍读出电子学各个模块的测试指标和测试方法。不仅进行了实验室测试,而且,也将读出电子学分别与能谱分析器、TOF质谱仪构建一个完整测试系统进行联合测试,并对测量的能谱和质谱进行分析以及对电子学性能的评估。第七章为论文的总结,并对下一步工作进行展望。