论文部分内容阅读
热轧带钢板形缺陷可导致带材断裂,并影响后续加工和产品性能。快速板形预测模型可实现板形演变分析与控制优化所需的大量复杂工况仿真,提高热轧全幅宽多目标板形控制的精度。但由于塑性变形固有的非线性和三维金属流动的强耦合性,轧件变形模型是快速板形模型开发中的瓶颈:有限元法计算时间过长,而现有快速模型存在假设多、收敛性差等不足。因此,本文基于准三维差分法,旨在建立兼顾计算精度、速度和稳健性的轧件模型,并用于解决热轧生产中的板形控制难点。主要研究成果如下:(1)建立了考虑横向流动的刚塑性(RP)轧件模型,可预测断面形状、轧制力和张力分布。与传统快速模型不同,RP模型不依赖对横向流动模式的假设,同时考虑了剪应力的影响,从根本上提高了精度。RP模型通过了有限元法与工业实验的组合验证,对实测凸度的预测误差小于15%。包含准三维近似、解耦消元、线性化、离散化和全局联立的迭代求解方法使计算高效稳健。RP模型计算时间约为20 ms,适用于多参数优化,且具备在线应用潜力。(2)建立了考虑机架间变形的弹粘塑性(EVP)轧件模型,可得到热连轧中完整的板形演变过程。EVP模型对宽展、断面形状和残余应力的预测能力得到了有限元验证,且对连轧实测凸度的预测误差小于11%。EVP模型仿真七机架连轧仅需半分钟,比有限元法快了两到三个量级,为连轧板形演变提供了有效分析工具。揭示了机架间变形影响板形的机理:在机架间弹复过程中,横向压应力释放并且带钢速度趋于均匀,残余应力从出口张力中逐渐显现;机架间应力松弛则主要发生在靠近辊缝的带钢边部,会直接增加带钢的边降,并通过改变辊缝中轧制力分布,间接减小中心凸度。(3)结合RP模型的全断面预测能力和粒子群算法,优化了工作辊锥辊辊形和窜辊参数,提出了变步长窜辊策略以应对非线性锥区辊形和不均匀磨损的影响。工业应用表明,优化后锥辊磨损辊形保持基本平滑,减轻了电工钢边降和局部高点缺陷,轧制周期延长约10公里。(4)利用EVP模型的残余应力预测能力分析了不锈钢高次浪形缺陷,得到了高次残余应力在各个机架的演变规律,揭示了边部温降与高次浪形的紧密关系。通过仿真优化了中间变凸度工作辊辊形,并在工业应用中有效地控制了不锈钢热连轧中经常出现的高次浪形缺陷。