论文部分内容阅读
云计算是近几年国内外信息通讯领域中最引人注目的焦点,作为云计算的核心安全问题――密文检索和处理问题也随之成为专家学者的研究热点.由于密码学中的同态加密技术恰好可以很好地解决上述问题,故对各种密码学意义上的同态加密的研究便再一次集中在同态加密算法的分析与设计这样一个公开问题上.如何能够找到有效的、可证明安全的同态加密方案,并且同时支持加法同态和乘法同态,即所谓的代数同态加密方案,使其具有如下性质:明文空间可以在不进行重加密的情况下得以扩展,根据参数的选取,方案固有的纠错能力由密文中传送的一定数量的错误信息来决定等,将是一个具有重要理论意义和应用价值的研究课题.本文针对代数同态加密方案的分析与设计问题进行较为系统地研究,具体工作如下:1.分别研究了两个基于编码理论的代数同态加密方案:Kiayias-Yung方案和Frederik-Ahmad方案,具体分析两个方案的正确性、代数同态性、加解密效率等方面,发现虽然Frederik-Ahmad方案很好地利用了RS码译码原理,在解密时具有较强的纠错能力,但其译码算法却比较复杂,并且密钥及密文长度过大导致该方案的效率较低.2.利用安全状态密码技术设计了一种新的基于BCH码译码原理的代数同态方案,与Frederik-Ahmad方案相比,新方案在保证正确性、代数同态性的基础上,在加、解密效率上有较大幅度提高,其原因是由于BCH码的码字符号域和译码计算域不同,且时域译码算法较RS码译码算法简单些.