论文部分内容阅读
无人机遥感作为一种灵活、高效的农田环境信息和作物生长信息获取技术,近年来在农业生产和科研领域得到了广泛的应用。随着农业4.0时代的来临,无人机遥感已经成为智慧农业中的重要组成部分,为智能化农业管理提供数据支持和决策依据。本研究以水稻等作物为研究对象,使用无人机搭载高光谱、多光谱和可见光等不同类型的传感器获取作物低空遥感影像,结合田间调查采样数据,综合使用光谱分析、图像分析、摄影测量、统计分析等技术,研究水稻等作物养分含量、叶绿素、叶面积指数、株高等农学参数的估算理论和方法,以及倒伏、虫害等农业灾害的快速、定量化监测技术,旨在探索了无人机在农作物生长信息获取和长势监测等方面的应用。主要结论如下:(1)使用无人机搭载高光谱成像仪获取水稻冠层高光谱影像,诊断水稻冠层叶片氮、磷、钾元素含量。结果表明:水稻冠层叶片氮含量(LNC)、叶片磷含量(LPC)和叶片钾含量(LKC)的光谱特征具有一致性,三种营养元素含量与无人机影像上水稻冠层光谱反射率在462~718 nm波长范围显著负相关(P<0.001),与一阶导数光谱在波长478~626nm的可见光范围和782~886nm的近红外范围极显著负相关、在710~754nm范围极显著正相关(P<0.001)。使用经过连续投影算法筛选得到的特征波长对应的光谱值为自变量,构建水稻冠层三种元素含量的估算模型中,验证R2均达到0.8以上。LNC与NDSI(R526,R562)、RSI(R526,R562)、DSI(R582,R502)、NDSI(D542,D666)、RSI(D582,D654)、DSI(D554,D646)6个新建光谱指数具有高相关性;LPC与NDSI(R498,R606)、RSI(R498,R606)、DSI(R498,R586)、NDSI(D642,D650)、RSI(D650,D838)、DSI(D614,D646)6个新建光谱指数具有高相关性;LKC与NDSI(R514,R570)、RSI(R514,R570)、DSI(R498,R582)、NDSI(D638,D654),RSI(D642,D650)、DSI(D618,D642)6个新建光谱指数具有高相关性,相关系数均达到0.85以上;基于新建光谱指数的各模型对LNC、LPC和LKC具有较好的预测能力(验证R2均高于0.8)。基于模型和高光谱影像计算得到各生育期水稻冠层LNC、LPC和LKC空间分布,其结果与实测值相一致,可以用于田间水稻冠层叶片氮、磷、钾元素丰缺状况的监测。(2)使用无人机搭载高光谱和多光谱传感器,分别获取宁夏和上海两个地区不同品种水稻的遥感影像,结合地面实测水稻冠层叶片SPAD值数据,分析SPAD值的光谱响应特征,建立两地通用的模型对SPAD值进行估算。分析结果显示:SPAD值与绿、红、红边波段反射率以及多个植被指数显著相关。基于两地数据,分别使用偏最小二乘、支持向量机和人工神经网络算法建立的通用模型能够较为准确地对两地水稻冠层叶片SPAD值进行预测;其中支持向量回归模型精度最高,验证R2为0.84,RMSE为2.93。结果表明,对于不同条件下获取的无人机遥感影像,存在统一的模型对水稻冠层叶片SPAD值进行反演。(3)分析水稻和小麦叶片叶绿素含量(LCC)和叶面积指数(LAI)在无人机高光谱影像上的光谱特征,结果显示水稻和小麦LCC与光谱反射率的相关性在可见光区域都表现出较为稳定的显著负相关(P<0.01);两者的LAI在近红外波段范围内与光谱反射率均表现出了强正相关(P<0.01)。使用多自变量对多因变量的偏最小二乘回归方法构建LCC-LAI协同模型,发现在自变量内部自相关性较高的情况下,协同模型对LCC和LAI的估算精度高于单变量模型,表明多因变量协同算法能够提升模型对水稻和小麦LCC和LAI的预测能力。此外构建稻+麦LCC-LAI通用模型,对两种作物的LCC和LAI的预测R2达到了0.65以上,表明无人机高光谱遥感在同时监测小麦和水稻的场景下可以使用通用模型对两种作物的LCC和LAI进行估算。(4)使用高精度测绘无人机获取水稻育种小区多时相DSM,通过对不同时期DSM的分析提取水稻在不同时期的株高信息,计算出各时期每个小区的水稻株高值,得到株高的空间分布。使用地面实测值对DSM提取株高进行验证,各个时期的验证R2均高于0.7,RMSE均小于0.07,最大误差不超过0.1m。(5)使用无人机搭载多光谱和可见光传感器获取倒伏水稻田的多光谱和RGB影像,从多光谱影像中提取的绿、红边和近红外波段反射率表现出对倒伏水稻的敏感。此外,从RGB影像中提取的Mean_G、Variance_B、g和Ex G4等纹理和色彩特征是RGB影像上倒伏水稻的敏感参数。这些现象可以通过倒伏水稻和正常水稻的冠层结构来解释。以筛选出的敏感光谱和图像特征为自变量,采用PLS-DA方法分别基于多光谱影像和RGB影像构建倒伏监测模型,并用于分类制图。两种倒伏分类图都表现出较高的精度,分类总精度大于90%,Kappa系数高于0.9。(6)以稻纵卷叶螟虫害为研究对象,使用基于无人机平台的遥感技术获取不同虫害程度水稻的多光谱影像,结合地面卷叶率调查,分析不同虫害程度水稻的冠层光谱和纹理特征,建立稻纵卷叶螟危害下水稻卷叶率的遥感估算模型,用于虫害严重程度的快速诊断。结果表明:在0.01水平上,卷叶率与绿、红边和近红外波段相关性最为显著,与红光波段反射率表现出显著正相关;与NDVI和DVI显著负相关;卷叶率与绿、红、红边和近红外四个波段的Mean、Homogeneity、Contrast和Dissimilarity 4类纹理变量显著相关。基于光谱和纹理综合变量、使用ANN算法构建的卷叶率估算模型能够较为精确地预测卷叶率,验证R2达到0.717、RMSE为0.702。研究结果可以为稻纵卷叶螟虫害快速调查提供理论依据和技术支持,也可以为虫害精准防控提供决策依据。