论文部分内容阅读
科学计算和工程应用中的许多问题都可转化为各类线性矩阵方程的求解.特别地,在循环平稳随机过程分析、线性离散时间周期系统的Luenberger型观测器设计、信号处理、周期鲁棒状态反馈极点配置问题和输出反馈最优周期控制问题中,我们需要寻找离散时间周期矩阵方程的解.在弹性材料的声学模拟、各向异性材料的弹性变形、结构分析中的有限元离散中,我们常常会碰到逆二次特征值问题.近二十年里,作为矩阵计算的推广,张量计算是最新的研究热点.各种形式的张量方程广泛存在于力学、物理学、Markov过程、控制理论、偏微分方程和工程问题中,如辐射传递方程、高维Possion方程、Einstein张力场方程和压电效应方程均为张量方程.特别地,谱配置方法离散三维长方体型区域辐射传递方程可得Tucker-乘积下的张量Sylvester方程.Possion问题离散后可得Einstein-乘积下的张量方程.本文研究了几类矩阵方程和张量方程的迭代解法,主要成果如下:第1章研究了一类线性周期矩阵方程的最小二乘问题及其最佳逼近问题.借助投影的性质、线性子空间约束下极小值问题的最优性条件并结合所求解方程的周期性特点,我们推导出该周期矩阵方程的法方程.接着,我们提出了有限迭代方法求该周期矩阵方程的最小二乘对称周期解并给出了算法的收敛性证明.同时,我们讨论了迭代算法中初始矩阵的选取方式,以获得该矩阵方程的唯一极小范数最小二乘对称周期解.进一步,我们将求唯一的最佳逼近解问题转化为求一个新的线性周期矩阵方程的唯一极小范数最小二乘对称周期解问题.数值实验验证了所提出算法可在有限步迭代内获得线性周期矩阵方程的最小二乘对称周期解.第2章提出了子矩阵约束下逆二次特征值问题双对称最小二乘解及其最佳逼近解的迭代算法.不同于许多线性矩阵方程共辄梯度法的导出过程,我们借助凸二次规划问题的非线性共辄梯度法构造了线性子空间约束下逆二次特征值问题最小二乘双对称解的迭代算法,并采用不同的思路证明了所提出算法的全局线性收敛性.同时,我们建立了最佳逼近问题的迭代算法.数值例子验证了所提出算法的有效性.第3章,针对Tucker-乘积下的张量Sylvester方程,我们首先构造了选主元的张量形式的全局Hessenberg过程以产生张量Krylov子空间的线性无关张量基,再利用残量极小化标准和残量正交化标准建立了基于Hessenberg的两种方法:CMRH-BTF方法和Hess-BTF方法.其次,我们将Tucker-乘积下的张量Sylvester方程写成等价的算子方程形式.基于算子双对角化过程,我们给出了张量形式的全局LSMR方法(GLSMR-BTF)的构造过程并给出了算法的具体实现细节.然后,借助于共辄梯度最小二乘方法,我们导出了张量形式的共辄梯度最小二乘方法(CGLS-BTF)求解Tucker-乘积下的张量Sylvester方程.我们证明了 CGLS-BTF方法可在有限步迭代内获得张量Sylvester方程的最小二乘解,并考虑了初始张量的选取方式以获得张量Sylvester方程的唯一极小范数最小二乘解.最后,我们用数值实验说明了本章所提出算法的有效性和优越性.第4章,对Einstein-乘积下的张量方程A*N=C,我们构造了张量形式的Arnold i和Lanczos过程以生成张量Krylov子空间的标准正交基,然后建立了张量形式的全局GMRES方法、张量形式的MINIRES方法(MINIRES-BTF)和张量形式的SYMMLQ方法(SYMMLQ-BTF),并给出了 MINIRES-BTF方法和SYMMLQ-BTF方法的具体实现细节.我们还提出了张量形式的CR算法(CR-BTF),并从理论上证明了 CR-BTF方法可在有限步迭代内得到张量方程的解.其次,对Einstein-乘积下的张量方程A*Nχ*M B+C*Nχ*M D=F,我们导出了张量形式的CGLS方法、张量形式的LSQR方法和张量形式的LSMR方法.此外,通过数值实验验证所提出算法的优势和可靠性.第5章提出了张量不等式D ≥ F约束下的Einstein-乘积张量方程A*Nχ*MB=C的迭代算法.利用张量的极分解定理、张量的Moore-Penrose广义逆和Hilbe rt空间分解定理证明了所提出算法的收敛性.最后,通过数值算例说明所提出算法的数值表现.