具奇异或退化性质的二阶抛物型方程的系数反演问题

来源 :兰州大学 | 被引量 : 12次 | 上传用户:nm680nm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要考虑具奇异或退化性质的二阶抛物型方程的系数反演问题,研究在适当的附加条件下解的唯一性和条件稳定性,正则化问题的解的存在性,唯一性,稳定性,收敛性,以及有效的数值重构方法。  第一章,首先介绍了偏微分方程系数反问题的研究背景,其后引入了本文的数学模型,并详细阐述了研究动机和研究的主要困难。  第二章,介绍了一些函数空间和相应的积分嵌入理论,以及二阶抛物型方程的适定性结果,这些结果在后面章节的证明中起到了重要作用。  第三章,研究了一个利用终端观测值确定二阶抛物型方程的辐射系数的反问题。与通常的终端控制问题不同,这里的观测数据仅在某个固定方向上给出,而不是整个区域,这会导致抛物型方程的共轭理论在此并不适用。另外,由于方程的定解域是圆或扇形,在极坐标下定解域可转化为一个矩形,但同时也会造成方程的主项系数奇异。为了克服系数奇异的困难,我们引入了一些赋权的Sobolev空间。基于最优控制理论框架,原问题被转化为一个优化问题。我们首先证明了极小元的存在性,并导出了极小元所满足的必要条件。利用极小元所满足的必要条件,以及正问题解的一些先验估计结果,我们证明了极小元的唯一性和稳定性。最后,为了说明最优控制问题的解和原问题的解之间的差异,我们还证明了极小元的收敛性,并给出了收敛阶。  第四章,研究了一个利用附加条件同时重构二阶退化抛物型方程的初值和源项系数的反问题。该问题的主要特征有两点:(i)方程的主项系数在定解区域的两端都退化为零;(ii)方程中包含两个独立的未知函数,因之这是一个多参数反演问题。系数的退化性一方面会造成方程在定解域的部分边界上缺失边界条件,另一方面还会导致方程的解没有足够的正则性。首先,我们利用 Carleman估计和对数凸性方法证明了原问题解的唯一性和条件稳定性。由于原问题的不适定性,我们利用优化方法将原问题转化为一个最优控制问题,并建立了正则化解的存在性,必要条件和收敛性。由于控制泛函含有两个独立的未知函数,且二者的地位并不相同,我们无法应用抛物型方程的共轭理论,否则无法得到正则化解的全局唯一性。我们这里采用的是分项估计的方法,并通过对必要条件的细致分析,最终得到了正则化解的全局唯一性和稳定性。  第五章,讨论了前一章中提出的反问题的数值重构。我们利用Landweber迭代算法来求反问题的数值解,其中的关键是求出正问题算子的共轭算子的具体形式。然而,由于两个未知函数的相互耦合,我们很难直接看出共轭算子的结构。为此,我们采用算子分解方法,通过将正问题算子分解为四个独立的算子,并分别求出对应的共轭算子,最后再组合在一起而得到了正问题算子的共轭算子。我们还进行了数值实验,并给出了典型的具体算例。数值实验表明我们的算法是稳定而有效的,两个未知函数都重构得很好。
其他文献
随机变量的指数不等式, 特别是独立随机变量的Bernstein不等式 (见Hoeffding, 1963),在许多极限理论证明中扮演着重要角色.关于相依序列, Boente和Fraiman (1988)对?-混合序
神经动力学优化理论因其具有高效的、实时求解最优化问题的特性,而受到众多学者的广泛关注。目前,学者们已经构造了各种各样的神经网络来求解优化问题,尤其是凸优化问题。根据自
本文主要研究了两类数域上的整基,三次域和分圆域,并利用代数数域解决了不定方程的整根存在性问题。   第一章介绍了数论的发展过程,费马大定理的提出为代数数论的发展奠定了
随着易采矿藏的逐步衰竭和科技的进步,勘探技术对效率和精度的要求越来越高。现有先进地震成像技术大多需要一种高效精确的正演模拟算法,而频率域波动方程求解则是其中之一。波
无约束优化方法是最优化方法研究领域中较重要的分支之一.在众多的无约束优化方法中,记忆梯度法,超记忆梯度法是利用前面迭代点的信息来产生下一个迭代点.这类算法具有较强地
学位