论文部分内容阅读
本文重点研究了不同工艺下用于相控阵雷达和通信系统的射频/微波单片集成电路设计。首先采用三维电磁场仿真方法建立了TSMC0.18um工艺的传输线的模型,根据此模型,采用传输线匹配的方法设计了工作在X波段(8-12GHz)的低噪声放大器(LNA)和功率放大器(PA),LNA的噪声系数小于4.5dB,小信号增益大于20dB,PA输出功率大于18.3dBm,功率增加效率为15%,并设计了SPDT开关,插入损耗2.5dB,隔离度大于20dB,最终实现收发模块。根据多层金属耦合的方法采用金属4和金属6设计了Balun结构,并在此基础上设计二极管环形混频器,混频器在17dBm的LO功率驱动下带内变频损耗小于14.2dB,最小变频损耗12dB。提出了一种高隔离度低损耗的CMOS工艺开关设计方法,设计了工作在S波段的隔离度为39.27dB,插入损耗1.03dB的高性能射频单刀双掷开关(SPDT),并设计了工作在3.1-10.6GHz的噪声系数小于3.55dB,增益大于15dB的超宽带低噪声放大器。采用GaAs0.25um工艺设计了两种类型的六位数字移相器,分别工作在S波段和C波段。由于两种移相器的电路结构相同,文章中只讨论了S波段移相器的详细设计,分别对各个移相单元180°、90°、45°、22.5°、11.25°、5.625°进行了详细设计。并对移相器的级联散射抑制和降低相位误差的方法进行了详细说明。S波段移相器测试结果表明在2.1-2.7GHz频率范围,移相器以5.625°为步进,相位均方根误差(RMS)小于1.7°,插入损耗小于6.3dB,输入输出反射系数小于-10dB。C波段移相器工作在3.6-4.2GHz频率范围,测试相位RMS小于1.73°,插入损耗小于6.4dB,波动小于0.4dB。输入输出驻波比分别为小于1.58和1.52。论文研究了基于GaN工艺的微波晶体管开关建模,提出了基于开关GaNHEMT晶体管物理结构分析的等效开关模型,对模型中各种本征和寄生参数进行了详细分析,并验证了模型的正确性,为在GaN基板上设计微波控制电路比如数字移相器、数控衰减器等打下基础。论文还研究了GaN MMIC工艺的器件建模,分别对电容、电感、微带线以及接地通孔进行建模。最后采用E/D模工艺设计了TTL电平转换电路,将数字控制信号的TTL电平转换成一组高低电平,电压分别为0V和-4V,实现数字电平直接控制耗尽型微波控制器件。