论文部分内容阅读
近红外光谱分析技术具有简单、快速、准确、无污染、重复性好、便于实现在线分析等优点,已经在某些领域得到了应用,并且发展迅速,前景广阔。但目前近红外光谱的分析技术应用还主要集中在石化、粮食、医学等行业。为了拓宽其应用范围,为植物生长信息获取探寻一个快速、无损的检测方法,本研究是以设施农业中的作物-尖椒(Pointed paprika,茄科,辣椒属)为研究对象,利用近红外光谱分析技术获取尖椒叶片生长信息(以叶绿素、水分和SPAD为例)的方法。本研究有两个重点:一是研究利用近红外光谱技术获取尖椒叶片叶绿素的光谱信息时,不同的预处理、建模方法、波段选择、异常样品剔除方法,对预测模型的影响;二是利用近红外获取尖椒叶片叶绿素的光谱信息,并利用光谱分析技术、化学计量学等方法建立预测尖椒叶片叶面水分、SPAD和叶绿素含量的预测模型。本文通过常规化学分析方法获取了尖椒叶片中的水分和叶绿素含量。利用美国尼高力(Nicolet)仪器公司的高性能高精确度NEXUS智能光纤漫反射附件的光谱测量方法获取叶面的光纤漫反射光谱。同时对近红外光谱分析实验进行了重点研究,通过对样品处理方法、扫描条件、谱图的预处理、建模方法、异常样品剔除等因素的分析,确定谱图最佳预处理方法及最佳预测模型的参数如下:水分的最佳预处理方法为水分原始光谱+MSC,最佳预测模型的参数分别为:R=0.95978,RMSEC:0.00735,RMSEP=0.0165,f=8叶绿素的最佳预处理方法为SNV+一阶微分+13点平滑,最佳预测模型的参数分别为:R=0.95208,RMSEC=0.0775,RMSEP=0.117,f=8SPAD值的最佳处理方法为MSC+一阶微分+5点平滑,预测模型的参数分别为:R=0.99273,RMSEC=6.32,RMSEP=1.21,f=8最佳建模方法为偏最小二乘法(PLS)。模型预测的结果也是准确的,可代替标准方法或参考方法进行尖椒叶片叶绿素含量的快速测定。