【摘 要】
:
石油作为我国重要能源之一,被广泛应用在交通工业、建材工业、化工工业等各大领域中,因此石油的高效开采对我国来说是非常重要的。由于我国大部分油田都属于高含蜡油田,在开采等过程中存在着结蜡现象。该现象使得油井直径变小、油杆负载变大,进而导致石油的开采效率降低、成本增加,更为严重时,导致油井停止生产等故障,降低经济效益。由此看来,如何有效的预测油井结蜡对石油高效开采具有重要研究意义和应用价值。本文采用随机
论文部分内容阅读
石油作为我国重要能源之一,被广泛应用在交通工业、建材工业、化工工业等各大领域中,因此石油的高效开采对我国来说是非常重要的。由于我国大部分油田都属于高含蜡油田,在开采等过程中存在着结蜡现象。该现象使得油井直径变小、油杆负载变大,进而导致石油的开采效率降低、成本增加,更为严重时,导致油井停止生产等故障,降低经济效益。由此看来,如何有效的预测油井结蜡对石油高效开采具有重要研究意义和应用价值。本文采用随机森林模型进行油井结蜡预测,其主要研究内容如下:(1)针对随机森林中相似决策树影响油井结蜡预测的问题,本文提出一种基于消冗和随机划分的改进随机森林算法。该算法采用随机特征节点划分策略,综合多种节点划分的特点,增强树的不相似程度;采用特征节点优选策略,增强节点特征的不相似程度;采用相似决策树的筛减策略,减少相似度树的数量。(2)针对传统蚁群算法优化过程中容易陷入局部最优的问题,本文提出一种基于可变天气因素的MMAS算法。该算法采用可变天气因素策略,增强蚁群的全局搜索能力;采用信息素更新策略,缩小信息素浓度之间的差距,增强蚁群跳出局部最优的能力。(3)针对油井结蜡数据特征存在冗余和模型参数取值难以确定的问题,本文综合考虑特征选择和模型参数优化对油井结蜡分类的影响,结合基于可变天气因素的MMAS算法和基于消冗和随机划分的改进随机森林算法的优势,提出一种基于VW-MMAS的RR-RF油井结蜡预测模型,进行油井结蜡预测特征选择及参数同步优选,实现了油井结蜡模型的构建。最后通过实验证明该算法的有效性和实用性。
其他文献
湿气输送管线内夹带的自由水及因管线沿程温度、压力变化产生的凝结水可与气体形成气液两相流,受气体流速、管道倾角等多种因素的影响,水以液膜的形式呈不同的厚度分布在管道内壁面的不同位置。当与气体伴生存在的CO2等腐蚀性气体溶于水,将导致管道内壁面的腐蚀破坏,影响管道输送的经济运行,危害周边的环境及人身安全。当前关于天然气管道内的CO2腐蚀研究还主要集中在体相溶液,结合液膜特征开展的研究则相对较少,对腐蚀
近年来,随着科学技术的飞速发展,当今社会开始进入了大数据时代,而图像、视频数据作为信息的主要载体更是占据了重要的地位。人体行为识别成为了现如今热门的研究领域,已取得了丰富的研究成果,并在视频监控、公共安全、环境控制和检测、运动分析等领域得到实际应用。在行为识别的研究范畴中,大致可分为基于单人的行为识别、基于双人的行为识别和基于多人的行为识别。基于单人的行为识别已有很多研究成果,而与单人行为相比,双
随着无线网络技术的迅猛发展,以及我国将物联网作为战略性新兴产业上升为国家发展重点,工作在ISM频段的无线网络设备数量呈指数型增长。这推动着单一网络环境向异构网络环境不断演进。在这一过程中,对于异构网络中不同设备之间相互通讯的需求不断增加。然而,传统的数据分发方案受限于单个节点的通讯范围和不同网络设备之间冲突等诸多方面的影响导致数据分发的效率不断降低,同时也不适用于异构网络所特有的网络模式。针对这些
链路预测有助于人们高效地从复杂网络中挖掘出丢失数据、新生数据以及虚假数据。基于网络拓扑结构相似性的链路预测算法是链路预测的热点研究方向,但是该类算法目前仍存在预测精度不够高的问题,主要原因是该类算法忽略了实际网络存在演化特性和算法自身不具备网络自适应预测能力,于是本论文提出了基于未来共同邻居的相似性链路预测模型。因此本论文的创新点和主要工作如下:1.通过分析现实网络连边形成的机制和网络的动态演变过
大多数复杂疾病都与基因相互关联,寻找与疾病相关的易感基因是分析和了解相关疾病可能发病的机理、设计相关疾病的易感基因诊断方法的重要理论基础。全基因组关联研究(Genome-Wide Association Study,GWAS)是一种系统性地搜寻与人类相关疾病易感遗传基因的生命科学研究方法。该方法通过对于人体的全部的基因组的关联分析,可以全面地揭示与疾病的发生、发展与其治疗密切相关的易感基因。传统的
基于视频的人体行为识别是计算机视觉领域的重要研究方向之一,能够应用于智能监控、人机交互、视频内容检索等众多领域中,具有非常广泛的应用前景。在互联网技术快速发展的今天,网络视频数量呈现爆发式增长的趋势,对视频数据处理的效率与质量提出了更高的要求。由于人体行为在时间上的连续性以及动作的复杂性等问题,如何高效准确地从视频中提取人体行为的特征仍面临巨大的挑战。近年来,深度学习技术在图像分类、目标检测等任务
去中心化是区块链技术的核心价值,该特性保证了区块链系统的安全性,但也为其数据管理带来了众多问题,如数据存储完整性、隐私泄露和存储性能差等。该类问题导致区块链应用在设计开发过程中代码量骤增或冗余,以至于开发效率降低。设计模式是软件开发过程中一般问题的解决方案,它的引入可以为解决区块链数据管理相关问题提供便捷的途径,对其进行服务封装更可以提高应用开发效率。论文对基于区块链的数据管理设计模式与服务进行了
手绘图像检索是一种通过手绘图像检索自然图像的检索技术。允许用户通过线条随心所欲地描绘头脑中想要表达的事物以作为检索输入,这是手绘图像检索最为主要的优势之一,然而手绘图像绘制过程中的主观性会带来语义模糊问题,这同样给手绘检索带来了挑战。手绘图像缺少颜色、纹理等细节信息,一般仅包含物体轮廓,因此通过整体视角进行观察,对于手绘图像语义理解至关重要。然而,本文通过调研发现,手绘图像的整体性在现有工作中并未
手绘图像作为一种新型的视觉表达方式,能够高效,灵活地描述物体的外观和结构。然而在手绘图像检索领域(Sketch Based Image Retrieval,简称SBIR)中,手绘图像则存在特征稀疏,易于形变等问题。手绘图像由一系列简单的线条构成,是一种高度稀疏的表达方式,因此传统图像检索的方法无法对手绘图像中的内容进行有效地描述;另外不同的人群绘画出的手绘草图在外形上也具有较大的差异性,这导致手绘
国内大部分油田处于勘探开发中后期,易于发现的油田越来越少,探明储量以隐蔽性油藏为主,但隐蔽性油藏难以发现。有利区预测是勘探开发过程中非常关键的一步,但传统有利区预测受限于现有的理论和方法,在地质条件复杂、地震属性种类多、地震属性相关性差的情况下,地震属性与有利区类别之间的对应关系难以确定,容易产生预测过程中的多解性问题,且地质勘探人员一般仅采用2-3种常规地震属性进行预测,忽略了其它未使用地震属性