【摘 要】
:
目前新兴的被广泛用于矿化有机污染物的高级氧化技术,主要通过催化剂活化过硫酸盐(包括过一硫酸盐与过二硫酸盐)氧化剂产生硫酸根自由基。生物炭由于其具有电化学结构(如表面基团、碳基体结构),可提供电子、接受电子、或者作为中间体介导电子转移来参与水中氧化还原反应。虽然生物炭能够将电子转移给过一硫酸盐产生硫酸根自由基,但是生物炭活化过一硫酸盐能力有限,对污染物的去除效率不高。钴纳米颗粒可高效活化过一硫酸盐,
论文部分内容阅读
目前新兴的被广泛用于矿化有机污染物的高级氧化技术,主要通过催化剂活化过硫酸盐(包括过一硫酸盐与过二硫酸盐)氧化剂产生硫酸根自由基。生物炭由于其具有电化学结构(如表面基团、碳基体结构),可提供电子、接受电子、或者作为中间体介导电子转移来参与水中氧化还原反应。虽然生物炭能够将电子转移给过一硫酸盐产生硫酸根自由基,但是生物炭活化过一硫酸盐能力有限,对污染物的去除效率不高。钴纳米颗粒可高效活化过一硫酸盐,然而易团聚且会造成二次污染。本研究以磺胺二甲基嘧啶为模型污染物,制备了载钴生物炭复合材料,以提高生物炭对过一硫酸盐的活化效果,碳基体增加了钴的分散性,有效抑制钴浸出,减少二次污染。优化了催化剂和氧化剂的投加量,热解温度,钴负载量,溶液pH对载钴生物炭催化剂使用的影响。还采用了XRD,XPS,Raman表征探究反应机制。主要研究结果如下:1.载钴生物炭催化剂可高效活化过一硫酸盐降解磺胺二甲基嘧啶。其中载钴生物炭和过一硫酸盐的最佳投加量分别为400 mg/L和0.06 m M,随着载钴生物炭投加量的提高,磺胺二甲基嘧啶降解效率增加,但过一硫酸盐投加过量会抑制反应速率。钴存在最佳负载量,过量的钴会活化产生过多自由基,发生自淬灭反应。在800°C下热解得到的载钴生物炭催化剂对过一硫酸盐具有最佳活化效果,热解温度通过影响负载的钴的晶型和种类影响去除效果。最适宜的溶液pH为8,可在60分钟内100%降解浓度为20 mg/L的污染物。2.在催化剂的重复使用实验中,催化剂回收再利用3次后,污染物去除率降低不足10%,钴仅有微量浸出,3次反应后的溶液钴浸出浓度均小于0.05 mg/L。使用高效液相色谱质谱研究了磺胺二甲基嘧啶的降解途径。当载钴生物炭应用于模拟地下水中磺胺二甲基嘧啶的去除时,也能表现出稳定良好的催化性能。3.空白生物炭的对照实验表明,在活化过一硫酸盐时,生物炭上负载的钴起主导作用。此外,钴和生物炭存在协同催化作用,协同作用的实现基于生物炭碳基体的类石墨结构介导电子在钴和过一硫酸盐之间的传递,提高电子转移效率和自由基产生效率。
其他文献
超高性能混凝土(Ultra high performance concrete,简称UHPC)作为先进的新材料应用于新型装配式结构将具有强度高、自重小、施工性能好、耐久性高、设计自由度大等突出优点。利用新材料与新结构深度融合的同时,考虑到如今拆除房屋造成的废弃混凝土量大且再利用率低等问题,为解决资源紧张及环境恶化的现状应用了再生混凝土(Recycled concrete,简称RC),将废弃建筑垃圾
软磁材料是电子器件的关键材料之一,而现代电子技术的小型化、高频化、高功率化发展要求磁性元件适应其发展的需求,即要求软磁材料具有高饱和磁化强度、高磁导率和低的磁损耗,从而使得高性能软磁复合材料(SMCs)的开发受到广泛关注。目前软磁复合材料主要存在磁性能低和损耗高的两大不足,为此,本文采用原位反应法在金属(Fe-Si)粉末表面生成具有高电阻率的亚铁磁性绝缘层,制备出具有核壳结构的软磁复合材料,在保证
随着建筑业的飞速发展,建筑垃圾与日俱增。对于建筑垃圾的处理手段,目前主要采用堆放和填埋的方式。然而,传统处置措施不仅占用有限的土地资源,对自然环境也造成了巨大的影响。与此同时,水泥稳定碎石因其自身优良的性能而广泛应用于道路建设。但由于基础建设对天然集料大量的需求,我国的公路建设正面临集料短缺的风险。另一方面,稻壳作为农作物的副产物,产量巨大,将稻壳资源再利用于道路工程领域具备较好的发展前景。基于此
我国是一个地震多发的国家,灾后重建过程中对震损结构一律拆除会造成巨大的经济和资源耗费,这将严重影响生产生活的恢复速度。部分在役老旧结构已不能满足现行抗震规范的要求,并且存在如钢筋锈蚀等材料性能劣化的现象,此类震损结构在应急阶段的安全性和恢复阶段的可修性值得进一步研究。为给震后损伤建筑的处理决策提供理论依据,本文对损伤RC构件和框架结构的剩余抗震性能展开研究,主要工作内容及成果如下:(1)从美国太平
随着中国经济的快速发展以及城市环保工作的大力开展,部分重污染企业开始向农村转移,工业排污导致农村人居水环境和农产品重金属污染形势严峻。木屑因其表面结构疏松多孔且本身含大量羟基官能团的特点,可作为水处理领域吸附剂的利用。木屑来源于木材加工所产生的废弃物和林业残留物(林业修剪、枯损木),具有原料丰富、密度小等特点,可作为重要绿色可再生生物资源加以利用。因此,将木屑经过一定处理工艺,用于处理重金属污染问
地下水是我国公共饮用水重要的供水水源,目前我国东北、华东、中南等区域地下水锰污染严重,给各区域的用水安全造成了不利影响,因此除锰技术与除锰材料的研究对人们用水安全具有重要意义。为此,本研究开展除锰复合材料的制备及其去除饮用水中Mn(II)的研究,为含锰地下水的吸附处理乃至将来构建一体化系统提供技术指导。本研究采用共沉淀法制备了羟基氧化铁/活性炭复合材料(Fe OOH@GAC),分别采用SEM、BE
建筑结构在其服役期间,受到自然环境和人为因素的影响而不断累积损伤。损伤的存在会严重影响结构的工作性能和安全性,因此损伤识别对于建筑结构的安全运营具有重要的意义。Hilbert-Huang变换因其对非线性信号时频分析的优越性被广泛应用于结构损伤识别中,然而作为Hilbert-Huang变换的核心步骤,经验模态分解(EMD)却存在端点效应和模态混叠等问题。本文针对EMD存在的端点效应问题进行了分析研究
无线通信技术飞速发展,目前,在国内已经开始商用的第五代(5G)无线通信仍然使用循环前缀正交频分复用(CP-OFDM)波形进行传输,但是其具有频谱利用率低,灵活性不足等局限性。滤波正交频分复用(F-OFDM)由于其子带可以根据不同的应用场景设置不同参数,带外频谱泄露(OOBE)低等优点有很大的希望应用于后续的无线通信系统版本当中。但由于使用正交调制,会带来峰均功率比(PAPR)较高的缺点。同时,通信
传统的天文导航方法中太阳光谱通常用于多普勒测速,然而太阳发生耀斑或黑子等活动时,太阳光谱会发生动态变化,这降低了测速导航精度。为了解决该问题,太阳光差分导航方法被提出,并受到广泛关注。其中,太阳光多普勒差分测速导航方法基于直射光和反射光两路光子的多普勒速度差进行差分测速。太阳光到达时间差方法基于直射光和反射光两路光子的到达时间差进行差分测距。这两种差分导航方法均解决了因太阳光不稳定而导致的光学误差
钛(Ti)及钛合金具有优异的力学性能、良好的生物相容性以及优异的耐腐蚀能力,因此被广泛应用于生物医用材料。以钛铌(Ti-Nb)和钛钽(Ti-Ta)基合金为主的第三代β型医用钛合金,与前两代医用钛合金相比,综合性能得到了显著提升。粉末冶金法具有原料利用率高与近净成型等优势,特别适用于形状复杂的医用钛及其合金产品的制备。而使用粉末冶金法制备Ti-Nb基和Ti-Ta基合金时,由于Nb和Ta等难熔金属的熔